Near-rings
   HOME
*





Near-rings
In mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a Ring (algebra), ring but satisfying fewer axioms. Near-rings arise naturally from Function (mathematics), functions on Group (mathematics), groups. Definition A set (mathematics), set ''N'' together with two binary operations + (called ''addition'') and ⋅ (called ''multiplication'') is called a (right) ''near-ring'' if: * ''N'' is a group (mathematics), group (not necessarily abelian group, abelian) under addition; * multiplication is associative property, associative (so ''N'' is a semigroup under multiplication); and * multiplication ''on the right'' distributive property, distributes over addition: for any ''x'', ''y'', ''z'' in ''N'', it holds that (''x'' + ''y'')⋅''z'' = (''x''⋅''z'') + (''y''⋅''z'').G. Pilz, (1982), "Near-Rings: What They Are and What They Are Good For" in ''Contemp. Math.'', 9, pp. 97–119. Amer. Math. Soc., Providence, R.I., 1981. Similarly, it is pos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Günter Pilz
Günter Pilz (born 1945 in Bad Hall, Upper Austria) is Professor of Mathematics at the Johannes Kepler University (JKU) Linz. Until his retirement in 2013 he was the head of the Institute of Algebra. Vita After studying mathematics and physics at the University of Vienna (1963–1967) and his PhD (1967), Günter Pilz was assistant professor at several institutions: at the Department of Mathematics of the University of Vienna (1966–1968), at the Department of Statistics at the University of Technology of Vienna (1968–1969), as Research Associate at the Department of Mathematics, University of Arizona, United States (1969–1970) and at the Department of Mathematics at the University of Linz (1970–1974). In 1971, he received his Habilitation. In 1974, he was promoted to a Professor of Mathematics at the JKU. He was head of the Department of Mathematics in Linz (1980–1983 und 1987–1993) and head of the Institute of Algebra (since 1996). From 1996 to 2000, Günter Pilz was D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Difference Set
In combinatorics, a (v,k,\lambda) difference set is a subset D of size k of a group G of order v such that every nonidentity element of G can be expressed as a product d_1d_2^ of elements of D in exactly \lambda ways. A difference set D is said to be ''cyclic'', ''abelian'', ''non-abelian'', etc., if the group G has the corresponding property. A difference set with \lambda = 1 is sometimes called ''planar'' or ''simple''. If G is an abelian group written in additive notation, the defining condition is that every nonzero element of G can be written as a ''difference'' of elements of D in exactly \lambda ways. The term "difference set" arises in this way. Basic facts * A simple counting argument shows that there are exactly k^2-k pairs of elements from D that will yield nonidentity elements, so every difference set must satisfy the equation k^2-k=(v-1)\lambda. * If D is a difference set, and g\in G, then gD=\ is also a difference set, and is called a translate of D (D + g in additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Block Design
In combinatorial mathematics, a block design is an incidence structure consisting of a set together with a family of subsets known as ''blocks'', chosen such that frequency of the elements satisfies certain conditions making the collection of blocks exhibit symmetry (balance). They have applications in many areas, including experimental design, finite geometry, physical chemistry, software testing, cryptography, and algebraic geometry. Without further specifications the term ''block design'' usually refers to a balanced incomplete block design (BIBD), specifically (and also synonymously) a 2-design, which has been the most intensely studied type historically due to its application in the design of experiments. Its generalization is known as a t-design. Overview A design is said to be ''balanced'' (up to ''t'') if all ''t''-subsets of the original set occur in equally many (i.e., ''λ'') blocks. When ''t'' is unspecified, it can usually be assumed to be 2, which means that ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Near-field (mathematics)
In mathematics, a near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws. Alternatively, a near-field is a near-ring in which there is a multiplicative identity and every non-zero element has a multiplicative inverse. Definition A near-field is a set Q together with two binary operations, + (addition) and \cdot (multiplication), satisfying the following axioms: :A1: (Q, +) is an abelian group. :A2: (a \cdot b) \cdot c = a \cdot (b \cdot c) for all elements a, b, c of Q (The associative law for multiplication). :A3: (a + b) \cdot c = a \cdot c + b \cdot c for all elements a, b, c of Q (The right distributive law). :A4: Q contains an element 1 such that 1 \cdot a = a \cdot 1 = a for every element a of Q (Multiplicative identity). :A5: For every non-zero element a of Q there exists an element a^ such that a \cdot a^ = 1 = a^ \cdot a (Multiplicative inverse). Notes on the definition # The above is, strictly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups have been studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a very wide class of topological groups. Topological groups, along with continuous group actions, are used to study continuous symmetries, which have many applications, for example, in physics. In functional analysis, every topological vector space is an additive topological group with the additional property that scalar multiplication is continuous; consequently, many results from the theory of topological groups can be applied to functional analysis. Formal definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a group is a group homomorphism . In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set ''S'' to itself. In any category, the composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a monoid, the full transformation monoid, and denoted (or to emphasize the category ). Automorphisms An invertible endomorphism of is called an automorphism. The set of all automorphisms is a subset of with a group structure, called the automorphism group of and denoted . In the following diagram, the arrows denote implication: Endomorphism rings Any two endomorphisms of an abelian group, , can be added toge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constant Function
In mathematics, a constant function is a function whose (output) value is the same for every input value. For example, the function is a constant function because the value of is 4 regardless of the input value (see image). Basic properties As a real-valued function of a real-valued argument, a constant function has the general form or just :Example: The function or just is the specific constant function where the output value is The domain of this function is the set of all real numbers R. The codomain of this function is just . The independent variable ''x'' does not appear on the right side of the function expression and so its value is "vacuously substituted". Namely and so on. No matter what value of ''x'' is input, the output is "2". :Real-world example: A store where every item is sold for the price of 1 dollar. The graph of the constant function is a horizontal line in the plane that passes through the point In the context of a polynomial in one variable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pointwise
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise. Pointwise operations Formal definition A binary operation on a set can be lifted pointwise to an operation on the set of all functions from to as follows: Given two functions and , define the function by Commonly, ''o'' and ''O'' are denoted by the same symbol. A similar definition is used for unary operations ''o'', and for operations of other arity. Examples \begin (f+g)(x) & = f(x)+g(x) & \text \\ (f\cdot g)(x) & = f(x) \cdot g(x) & \text \\ (\lambda \cdot f)(x) & = \lambda \cdot f(x) & \text \end where f, g : X \to R. See also pointwise product, and scalar. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero Map
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. Common names for the number 0 in English are ''zero'', ''nought'', ''naught'' (), ''nil''. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as ''oh'' or ''o'' (). Informal or slang terms for 0 include ''zilch'' and ''zip''. Historically, ''ought'', ''aught'' (), and ''cipher'', have also been used. Etymology The word ''zero'' came into the English language via French from the Italian , a contraction of the Venetian form of Italian via ''ṣafira'' or ''ṣifr''. In pre-Islamic time the word (Arabic ) had the meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]