Nonstandard Calculus
In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic. Non-rigorous calculations with infinitesimals were widely used before Karl Weierstrass sought to replace them with the (ε, δ)-definition of limit starting in the 1870s. For almost one hundred years thereafter, mathematicians such as Richard Courant viewed infinitesimals as being naive and vague or meaningless. Contrary to such views, Abraham Robinson showed in 1960 that infinitesimals are precise, clear, and meaningful, building upon work by Edwin Hewitt and Jerzy Łoś. According to Howard Keisler, "Robinson solved a three hundred year old problem by giving a precise treatment of infinitesimals. Robinson's achievement will probably rank as one of the major mathematical advances of the twentieth century." Histor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bonaventura Cavalieri
Bonaventura Francesco Cavalieri (; 1598 – 30 November 1647) was an Italian mathematician and a Jesuati, Jesuate. He is known for his work on the problems of optics and motion (physics), motion, work on indivisibles, the precursors of infinitesimal calculus, and the introduction of logarithms to Italy. Cavalieri's principle in geometry partially anticipated integral calculus. Life Born in Milan, Cavalieri joined the Jesuates order (not to be confused with the Society of Jesus, Jesuits) at the age of fifteen, taking the name Bonaventura upon becoming a novice of the order, and remained a member until his death. He took his vows as a full member of the order in 1615, at the age of seventeen, and shortly after joined the Jesuat house in Pisa. By 1616 he was a student of geometry at the University of Pisa. There he came under the tutelage of Benedetto Castelli, who probably introduced him to Galileo Galilei. In 1617 he briefly joined the House of Medici, Medici court in Floren ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperreal Number
In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be finite if, and only if, , x, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit Of A Function
Although the function is not defined at zero, as becomes closer and closer to zero, becomes arbitrarily close to 1. In other words, the limit of as approaches zero, equals 1. In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below. Informally, a function assigns an output to every input . We say that the function has a limit at an input , if gets closer and closer to as moves closer and closer to . More specifically, the output value can be made ''arbitrarily'' close to if the input to is taken ''sufficiently'' close to . On the other hand, if some inputs very close to are taken to outputs that stay a fixed distance apart, then we say the limit ''does not exist''. The notion of a limit has many applications in modern calc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Augustin Louis Cauchy
Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real analysis), pioneered the field complex analysis, and the study of permutation groups in abstract algebra. Cauchy also contributed to a number of topics in mathematical physics, notably continuum mechanics. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: : "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific worker; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. Biography Youth and education Cauchy was the son of Louis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean Le Rond D'Alembert
Jean-Baptiste le Rond d'Alembert ( ; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a co-editor of the ''Encyclopédie''. D'Alembert's formula for obtaining solutions to the wave equation is named after him. The wave equation is sometimes referred to as d'Alembert's equation, and the fundamental theorem of algebra is named after d'Alembert in French. Early years Born in Paris, d'Alembert was the natural son of the writer Claudine Guérin de Tencin and the chevalier Louis-Camus Destouches, an artillery officer. Destouches was abroad at the time of d'Alembert's birth. Days after birth his mother left him on the steps of the church. According to custom, he was named after the patron saint of the church. D'Alembert was placed in an orphanage for foundling children, but his father found him and placed him with the wife of a glazier, Madame Rousseau ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Colin Maclaurin
Colin Maclaurin (; ; February 1698 – 14 June 1746) was a Scottish mathematician who made important contributions to geometry and algebra. He is also known for being a child prodigy and holding the record for being the youngest professor. The Maclaurin series, a special case of the Taylor series, is named after him. Owing to changes in orthography since that time (his name was originally rendered as M'Laurine), his surname is alternatively written MacLaurin. Early life Maclaurin was born in Kilmodan, Argyll. His father, John Maclaurin, minister of Glendaruel, died when Maclaurin was in infancy, and his mother died before he reached nine years of age. He was then educated under the care of his uncle, Daniel Maclaurin, minister of Kilfinan. A child prodigy, he entered university at age 11. Academic career At eleven, Maclaurin, a child prodigy at the time, entered the University of Glasgow. He graduated Master of Arts three years later by defending a thesis on ''the Power ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Analyst
''The Analyst'' (subtitled ''A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith'') is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended. The book contains a direct attack on the foundations of calculus, specifically on Isaac Newton's notion of Method of Fluxions, fluxions and on Gottfried Leibniz, Leibniz's notion of infinitesimal change. Background and purpose From his earliest days as a writer, Berkeley had taken up his satirical pen to attack what were then called 'free-thinkers' (secularists, sceptics, agnostics, atheists, etc.—in short, anyone who doubted the truths of received Christi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George Berkeley
George Berkeley ( ; 12 March 168514 January 1753), known as Bishop Berkeley (Bishop of Cloyne of the Anglican Church of Ireland), was an Anglo-Irish philosopher, writer, and clergyman who is regarded as the founder of "immaterialism", a philosophical theory he developed which was later referred to as "subjective idealism" by others. As a leading figure in the empiricism movement, he was one of the most cited philosophers of Age of Enlightenment, 18th-century Europe, and his works had a profound influence on the views of other thinkers, especially Immanuel Kant and David Hume. Interest in his ideas increased significantly in the United States during the early 19th century, and as a result, the University of California, Berkeley, as well as the city of Berkeley, California, were both named after him. In 1709, Berkeley published his first major work ''s:An Essay Towards a New Theory of Vision, An Essay Towards a New Theory of Vision'', in which he discussed the limitations of huma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michel Rolle
Michel Rolle (21 April 1652 – 8 November 1719) was a French mathematician. He is best known for Rolle's theorem (1691). He is also the co-inventor in Europe of Gaussian elimination (1690). Life Rolle was born in Ambert, Basse-Auvergne. Rolle, the son of a shopkeeper, received only an elementary education. He married early and as a young man struggled to support his family on the meager wages of a transcriber for notaries and attorney. In spite of his financial problems and minimal education, Rolle studied algebra and Diophantine analysis (a branch of number theory) on his own. He moved from Ambert to Paris in 1675. Rolle's fortune changed dramatically in 1682 when he published an elegant solution of a difficult, unsolved problem in Diophantine analysis. The public recognition of his achievement led to a patronage under minister Louvois, a job as an elementary mathematics teacher, and eventually to a short-termed administrative post in the Ministry of War. In 1685 he joine ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |