Monad (category Theory)
In category theory, a branch of mathematics, a monad is a triple (T, \eta, \mu) consisting of a functor ''T'' from a category to itself and two natural transformations \eta, \mu that satisfy the conditions like associativity. For example, if F, G are functors adjoint to each other, then T = G \circ F together with \eta, \mu determined by the adjoint relation is a monad. In concise terms, a monad is a monoid in the category of endofunctors of some fixed category (an endofunctor is a functor mapping a category to itself). According to John Baez, a monad can be considered at least in two ways: https://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html # A monad as a generalized monoid; this is clear since a monad is a monoid in a certain category, # A monad as a tool for studying algebraic gadgets; for example, a group can be described by a certain monad. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Programming Language
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner. Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming that treats all functions as deterministic mathematical functions, or pure functions. When a pure function is called with some ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monad Unit Explicit
Monad may refer to: Philosophy * Monad (philosophy), a term meaning "unit" **Monism, the concept of "one essence" in the metaphysical and theological theory ** Monad (Gnosticism), the most primal aspect of God in Gnosticism * ''Great Monad'', an older name for the ''taijitu'' symbol * ''Monadologia Physica'', by Immanuel Kant * '' La Monadologie'', by Gottfried Leibniz, a book about a basic unit of perceptual reality * '' Monas Hieroglyphica'', a 1564 book by John Dee describing a symbol of his own invention Mathematics, science and technology * Monad (biology), a historical term for a simple unicellular organism * Monad (category theory), a construction in category theory * Monad (functional programming), functional programming constructs that capture various notions of computation * Monad (homological algebra), a 3-term complex * Monad (nonstandard analysis), the set of points infinitesimally close to a given point * Monad shell, the code name for the PowerShell command l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coherence Law For The Unit Of A Monad
Coherence is, in general, a state or situation in which all the parts or ideas fit together well so that they form a united whole. More specifically, coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a derived unit that, for a given system of quantities and for a chosen set of base units, is a product of powers of base units with no other proportionality factor than one * Coherence time, the time over which a propagating wave (especially a laser or maser beam) may be considered coherent; the time interval within which its phase is, on average, predictable Mathematics * Coherence (philosophical gambling strategy), a concept in Bayesian statistics * Coherence (signal processing), a statistic that can be used to examine the relation between two signals or data sets * Coherence (statistics), a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Diagrams
350px, The commutative diagram used in the proof of the five lemma In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra. Description A commutative diagram often consists of three parts: * objects (also known as ''vertices'') * morphisms (also known as ''arrows'' or ''edges'') * paths or composites Arrow symbols In algebra texts, the type of morphism can be denoted with different arrow usages: * A monomorphism may be labeled with a \hookrightarrow or a \rightarrowtail. * An epimorphism may be labeled with a \twoheadrightarrow. * An isomorphism may be labeled with a \overset. * The dashed arrow typically represents the claim that the indicated morphism exists (whenever the rest of the diagram holds); the arrow may be optionally labeled as \exis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coherence Condition
In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold "up to homotopy" or "up to isomorphism". The adjectives such as "pseudo-" and "lax-" are used to refer to the fact equalities are weakened in coherent ways; e.g., pseudo-functor, pseudoalgebra. Coherent isomorphism In some situations, isomorphisms need to be chosen in a coherent way. Often, this can be achieved by choosing canonical isomorphisms. But in some cases, such as prestacks, there can be several canonical isomorphisms and there might not be an obvious choice among them. In practice, coherent isomorphisms arise by weakening equalities; e.g., strict associativity may be replaced by associativity via coherent isomorphisms. For example, via this process, one gets the notion of a weak 2-category from that of a strict 2-category. Replacing coherent isomorphisms by equalities is usually called strictification or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |