Molecular Engineering
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design. Molecular engineering is highly interdisciplinary by nature, encompassing aspects of chemical engineering, materials science, bioengineering, electrical engineering, physics, mechanical engineering, and chemistry. There is also considerable overlap with nanotechnology, in that both are concerned with the behavior of materials on the scale of nanometers or smaller. Given the highly fundamental nature of molecular interactions, there are a plethora of potential application areas, limited perhaps only by one's imagination and the laws of physics. However, some of the e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Top-down And Bottom-up Design
Top-down and bottom-up are both strategies of information processing and knowledge ordering, used in a variety of fields including software, humanistic and scientific theories (see systemics), and management and organization. In practice, they can be seen as a style of thinking, teaching, or leadership. A top-down approach (also known as ''stepwise design'' and stepwise refinement and in some cases used as a synonym of ''decomposition'') is essentially the breaking down of a system to gain insight into its compositional sub-systems in a reverse engineering fashion. In a top-down approach an overview of the system is formulated, specifying, but not detailing, any first-level subsystems. Each subsystem is then refined in yet greater detail, sometimes in many additional subsystem levels, until the entire specification is reduced to base elements. A top-down model is often specified with the assistance of "black boxes", which makes it easier to manipulate. However, black boxes may ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alan J
Alan may refer to: People *Alan (surname), an English and Turkish surname *Alan (given name), an English given name **List of people with given name Alan ''Following are people commonly referred to solely by "Alan" or by a homonymous name.'' *Alan (Chinese singer) (born 1987), female Chinese singer of Tibetan ethnicity, active in both China and Japan *Alan (Mexican singer) (born 1973), Mexican singer and actor * Alan (wrestler) (born 1975), a.k.a. Gato Eveready, who wrestles in Asistencia Asesoría y Administración *Alan (footballer, born 1979) (Alan Osório da Costa Silva), Brazilian footballer *Alan (footballer, born 1998) (Alan Cardoso de Andrade), Brazilian footballer *Alan I, King of Brittany (died 907), "the Great" *Alan II, Duke of Brittany (c. 900–952) *Alan III, Duke of Brittany(997–1040) *Alan IV, Duke of Brittany (c. 1063–1119), a.k.a. Alan Fergant ("the Younger" in Breton language) *Alan of Tewkesbury, 12th century abbott *Alan of Lynn (c. 1348–1423), 15th cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy Storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms. Some technologies provide short-term energy storage, while others can endure for much longer. Bulk energy storage is currently dominated by hydroelectric dams, both conventional as well as pumped. Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Common examples of energy storage are the rechargeable battery, which stores chemical energy readily convertible to electricity to opera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy Harvesting
Energy harvesting (EH, also known as power harvesting or energy scavenging or ambient power) is the process by which energy is derived from external sources (e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic energy, also known as ambient energy), and then captured, and stored for small, wireless autonomous devices, like those used in wearable electronics and wireless sensor networks. Energy harvesters usually provide a very small amount of power for low-energy electronics. While the input fuel to some large-scale generation costs resources (oil, coal, etc.), the energy source for energy harvesters is present as ambient background. For example, temperature gradients exist from the operation of a combustion engine and in urban areas, there is a large amount of electromagnetic energy in the environment because of radio and television broadcasting. One of the earliest applications of ambient power collected from ambient electromagnetic radiatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superhydrophobic Coating
A superhydrophobic coating is a thin surface layer that repels water. It is made from superhydrophobic (ultrahydrophobicity) materials. Droplets hitting this kind of coating can fully rebound.Richard, Denis, Christophe Clanet, and David Quéré. "Surface phenomena: Contact time of a bouncing drop." Nature 417.6891 (2002): 811-811Yahua Liu, Lisa Moevius, Xinpeng Xu,Tiezheng Qian, Julia M Yeomans, Zuankai Wang. "Pancake bouncing on superhydrophobic surfaces." Nature Physics, 10, 515-519 (2014) Generally speaking, superhydrophobic coatings are made from composite materials where one component provides the roughness and the other provides low surface energy. Material used Superhydrophobic coatings can be made from many different materials. The following are known possible bases for the coating: * Manganese oxide polystyrene (MnO2/PS) nano-composite * Zinc oxide polystyrene (ZnO/PS) nano-composite * Precipitated calcium carbonate * Carbon nano-tube structures * Silica nano-co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|