Indeterminate Equations
   HOME





Indeterminate Equations
In mathematics, particularly in number theory, an indeterminate system has fewer equations than unknowns but an additional a set of constraints on the unknowns, such as restrictions that the values be integers. In modern times indeterminate equations are often called Diophantine equations. Examples Linear indeterminate equations An example linear indeterminate equation arises from imagining two equally rich men, one with 5 rubies, 8 sapphires, 7 pearls and 90 gold coins; the other has 7, 9, 6 and 62 gold coins; find the prices (y, c, n) of the respective gems in gold coins. As they are equally rich: 5y + 8c + 7n + 90 = 7y + 9c + 6n + 62 Bhāskara II gave an general approach to this kind of problem by assigning a fixed integer to one (or N-2 in general) of the unknowns, e.g. n=1, resulting a series of possible solutions like (y, c, n)=(14, 1, 1), (13, 3, 1). For given integers , and , the general linear indeterminant equation is ax + by = n with unknowns and restricted to in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diophantine Equations
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bhāskara II
Bhāskara II ('; 1114–1185), also known as Bhāskarāchārya (), was an Indian people, Indian polymath, Indian mathematicians, mathematician, astronomer and engineer. From verses in his main work, Siddhānta Śiromaṇi, it can be inferred that he was born in 1114 in Vijjadavida (Vijjalavida) and living in the Satpura mountain ranges of Western Ghats, believed to be the town of Patana in Chalisgaon, located in present-day Khandesh region of Maharashtra by scholars. In a temple in Maharashtra, an inscription supposedly created by his grandson Changadeva, lists Bhaskaracharya's ancestral lineage for several generations before him as well as two generations after him. Henry Thomas Colebrooke, Henry Colebrooke who was the first European to translate (1817) Bhaskaracharya II's mathematical classics refers to the family as Maharashtrian Brahmins residing on the banks of the Godavari River, Godavari. Born in a Hindu Deshastha Brahmin family of scholars, mathematicians and astrono ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Greatest Common Divisor
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest common divisor of and is denoted \gcd (x,y). For example, the GCD of 8 and 12 is 4, that is, . In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor, etc. Historically, other names for the same concept have included greatest common measure. This notion can be extended to polynomials (see ''Polynomial greatest common divisor'') and other commutative rings (see ' below). Overview Definition The ''greatest common divisor'' (GCD) of integers and , at least one of which is nonzero, is the greatest positive integer such that is a divisor of both and ; that is, there are integers and such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aryabhata
Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the '' Āryabhaṭīya'' (which mentions that in 3600 '' Kali Yuga'', 499 CE, he was 23 years old) and the ''Arya- siddhanta''. For his explicit mention of the relativity of motion, he also qualifies as a major early physicist. Biography Name While there is a tendency to misspell his name as "Aryabhatta" by analogy with other names having the " bhatta" suffix, his name is properly spelled Aryabhata: every astronomical text spells his name thus, including Brahmagupta's references to him "in more than a hundred places by name". Furthermore, in most instances "Aryabhatta" would not fit the metre either. Time and place of birth Aryabhata mentions in the ''Aryabhatiya'' that he was 23 years old 3,600 years into the '' Kali Yuga'', but this is not to mean that the text was composed at that ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid's Algorithm
In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his ''Elements'' (). It is an example of an ''algorithm'', a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations. The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantus
Diophantus of Alexandria () (; ) was a Greek mathematician who was the author of the '' Arithmetica'' in thirteen books, ten of which are still extant, made up of arithmetical problems that are solved through algebraic equations. Although Joseph-Louis Lagrange called Diophantus "the inventor of algebra" he did not invent it; however, his exposition became the standard within the Neoplatonic schools of Late antiquity, and its translation into Arabic in the 9th century AD and had influence in the development of later algebra: Diophantus' method of solution matches medieval Arabic algebra in its concepts and overall procedure. The 1621 edition of ''Arithmetica'' by Bachet gained fame after Pierre de Fermat wrote his famous " Last Theorem" in the margins of his copy. In modern use, Diophantine equations are algebraic equations with integer coefficients for which integer solutions are sought. Diophantine geometry and Diophantine approximations are two other subareas of number theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetica
Diophantus of Alexandria () (; ) was a Greek mathematics, Greek mathematician who was the author of the ''Arithmetica'' in thirteen books, ten of which are still extant, made up of arithmetical problems that are solved through algebraic equations. Although Joseph-Louis Lagrange called Diophantus "the inventor of algebra" he did not invent it; however, his exposition became the standard within the Neoplatonic schools of Late antiquity, and its translation into Arabic in the 9th century AD and had influence in the development of later algebra: Diophantus' method of solution matches medieval Arabic algebra in its concepts and overall procedure. The 1621 edition of ''Arithmetica'' by Bachet gained fame after Pierre de Fermat wrote his famous "Fermat's Last Theorem, Last Theorem" in the margins of his copy. In modern use, Diophantine equation, Diophantine equations are algebraic equations with integer coefficients for which integer solutions are sought. Diophantine geometry and Dioph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Numbers
In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set (mathematics), set of all rational numbers is often referred to as "the rationals", and is closure (mathematics), closed under addition, subtraction, multiplication, and division (mathematics), division by a nonzero rational number. It is a field (mathematics), field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of numerical digit, digits (example: ), or eventually begins to repeating decimal, repeat the same finite sequence of digits over and over (example: ). This st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierre De Fermat
Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' ''Arithmetica''. He was also a lawyer at the ''parlement'' of Toulouse, France. Biography Fermat was born in 1601 in Beaumont-de-Lomagne, France—the late 15th-century mansion where Fermat was born is now a museum. He was from Gascony, where his father, Dominique Fermat, was a wealthy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]