Hypersequent
   HOME
*





Hypersequent
In mathematical logic, the hypersequent framework is an extension of the proof-theoretical framework of sequent calculi used in structural proof theory to provide analytic calculi for logics that are not captured in the sequent framework. A hypersequent is usually taken to be a finite multiset of ordinary sequents, written : \Gamma_1 \Rightarrow \Delta_1 \mid \cdots \mid \Gamma_n \Rightarrow \Delta_n The sequents making up a hypersequent are called components. The added expressivity of the hypersequent framework is provided by rules manipulating different components, such as the communication rule for the intermediate logic LC (below left) or the modal splitting rule for modal logic S5 (below right): : \frac \frac Hypersequent calculi have been used to treat modal logics, intermediate logics, and substructural logics. Hypersequents usually have a formula interpretation, i.e., are interpreted by a formula in the object language, nearly always as some kind of disjunction. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structural Proof Theory
In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory. Analytic proof The notion of analytic proof was introduced into proof theory by Gerhard Gentzen for the sequent calculus; the analytic proofs are those that are cut-free. His natural deduction calculus also supports a notion of analytic proof, as was shown by Dag Prawitz; the definition is slightly more complex—the analytic proofs are the normal forms, which are related to the notion of normal form in term rewriting. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structural Rule
In proof theory, a structural rule is an inference rule that does not refer to any logical connective, but instead operates on the judgment or sequents directly. Structural rules often mimic intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics. Common structural rules Three common structural rules are: * Weakening, where the hypotheses or conclusion of a sequent may be extended with additional members. In symbolic form weakening rules can be written as \frac on the left of the turnstile, and \frac on the right. * Contraction, where two equal (or unifiable) members on the same side of a sequent may be replaced by a single member (or common instance). Symbolically: \frac and \frac. Also known as factoring in automated theorem proving systems using resolution. Known as idempotency of entailment in classical logic. * Exchange, where two members on the same side of a sequent may be swapped. Symbol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cut Elimination
The cut-elimination theorem (or Gentzen's ''Hauptsatz'') is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems system LJ, LJ and system LK, LK formalising intuitionistic logic, intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule. The cut rule A sequent is a logical expression relating multiple formulas, in the form , which is to be read as proves , and (as glossed by Gentzen) should be understood as equivalent to the truth-function "If (A_1 and A_2 and A_3 …) then (B_1 or B_2 or B_3 …)." Note that the left-hand side (LHS) is a conjunction (and) and the right-hand side (RHS) is a disjunction (or). The LHS may have arb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LC (modal Logic)
LC or Lc may refer to: Arts and entertainment * Library of Congress Classification, a system of library classification Gaming and play * Lego Chess, a Lego-based chess video game * Lego Creator, a theme of Lego * ''Lego Creator'' (video game), a Lego video game * Liberty City (Grand Theft Auto), a fictional city in the ''Grand Theft Auto'' computer and video game series Music * ''LC'' (album), 1981 album by The Durutti Column * Lacuna Coil, an Italian gothic metal band * Living Colour, an American hard rock band formed in New York * Los Campesinos!, a British indie-rock band formed in Cardiff In other media * Licensed Companion, from the ''In Death'' novels of J.D. Robb (Nora Roberts) * Shop LC, a 24/7 American shopping television channel Businesses, organisations, and government agencies Government agencies * Irish Land Commission (or simply Land Commission), a rent fixing commission by the Land Law (Ireland) Act 1881 * Library of Congress, the ''de facto'' United States nat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completeness (logic)
In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true. Other properties related to completeness The property converse to completeness is called soundness: a system is sound with respect to a property (mostly semantical validity) if each of its theorems has that property. Forms of completeness Expressive completeness A formal language is expressively complete if it can express the subject matter for which it is intended. Functional completeness A set of logical connectives associated with a formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cut Rule
In mathematical logic, the cut rule is an inference rule of sequent calculus In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology i .... It is a generalisation of the classical modus ponens inference rule. Its meaning is that, if a formula ''A'' appears as a conclusion in one proof and a hypothesis in another, then another proof in which the formula ''A'' does not appear can be deduced. In the particular case of the modus ponens, for example occurrences of ''man'' are eliminated of ''Every man is mortal, Socrates is a man'' to deduce ''Socrates is mortal''. Formal notation Formal notation in sequent calculus notation : ;cut: : \begin\Gamma \vdash A, \Delta \\ \Gamma', A \vdash \Delta' \\ \hline \Gamma, \Gamma' \vdash \Delta, \Delta'\end{array} Elimination The cut rule is the subjec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Admissible Set
In set theory, a discipline within mathematics, an admissible set is a transitive set A\, such that \langle A,\in \rangle is a model of Kripke–Platek set theory (Barwise 1975). The smallest example of an admissible set is the set of hereditarily finite sets. Another example is the set of hereditarily countable sets. See also * Admissible ordinal References * Barwise, Jon (1975). ''Admissible Sets and Structures: An Approach to Definability Theory'', Perspectives in Mathematical Logic, Volume 7, Springer-VerlagElectronic versionon Project Euclid Project Euclid is a collaborative partnership between Cornell University Library and Duke University Press which seeks to advance scholarly communication in theoretical and applied mathematics and statistics through partnerships with independent an .... Set theory {{settheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functionally Complete
In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression.. ("Complete set of logical connectives").. (" nctional completeness of set of logical operators"). A well-known complete set of connectives is . Each of the singleton sets and is functionally complete. A gate or set of gates which is functionally complete can also be called a universal gate / gates. A functionally complete set of gates may utilise or generate 'garbage bits' as part of its computation which are either not part of the input or not part of the output to the system. In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate.. (Defines "expressively adequate", shortened to "adequate set of connectives" in a section heading.) From the point of view of digital electronics, functional completeness means that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]