Huge Cardinal
   HOME
*





Huge Cardinal
In mathematics, a cardinal number κ is called huge if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point (set theory), critical point κ and :^M \subset M.\! Here, ''αM'' is the class of all sequences of length α whose elements are in M. Huge cardinals were introduced by . Variants In what follows, j''n'' refers to the ''n''-th iterate of the elementary embedding j, that is, j function composition, composed with itself ''n'' times, for a finite ordinal ''n''. Also, ''<αM'' is the class of all sequences of length less than α whose elements are in M. Notice that for the "super" versions, γ should be less than j(κ), not . κ is almost n-huge if and only if there is ''j'' : ''V'' → ''M'' with critical point κ and :^M \subset M.\! κ is super almost n-huge if and only if for every ordinal γ there is ''j'' : ''V'' → ''M'' with critical point κ, γ<j(κ), and :^M \subset M.\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank Into Rank
In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength. (A set of rank < λ is one of the elements of the set Vλ of the von Neumann hierarchy.) *Axiom I3: There is a nontrivial of Vλ into itself. *Axiom I2: There is a nontrivial elementary embedding of V into a transitive class M that includes Vλ where λ is the first fixed point above the critical point. *Axiom I1: There is a nontrivial elementary embedding of Vλ+1 into itse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Large Cardinal Properties
This page includes a list of cardinals with large cardinal properties. It is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, ''V''κ satisfies "there is an unbounded class of cardinals satisfying φ". The following table usually arranges cardinals in order of consistency strength, with size of the cardinal used as a tiebreaker. In a few cases (such as strongly compact cardinals) the exact consistency strength is not known and the table uses the current best guess. * "Small" cardinals: 0, 1, 2, ..., \aleph_0, \aleph_1,..., \kappa = \aleph_, ... (see Aleph number) * worldly cardinals * weakly and strongly inaccessible, α-inaccessible, and hyper inaccessible cardinals * weakly and strongly Mahl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank-into-rank
In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength. (A set of rank < λ is one of the elements of the set Vλ of the .) *Axiom I3: There is a nontrivial of Vλ into itself. *Axiom I2: There is a nontrivial elementary embedding of V into a transitive class M that includes Vλ where λ is the first fixed point above the critical point. *Axiom I1: There is a nontrivial elementary embedd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kunen's Inconsistency Theorem
In set theory, a branch of mathematics, Kunen's inconsistency theorem, proved by , shows that several plausible large cardinal axioms are inconsistent with the axiom of choice. Some consequences of Kunen's theorem (or its proof) are: *There is no non-trivial elementary embedding of the universe ''V'' into itself. In other words, there is no Reinhardt cardinal. *If ''j'' is an elementary embedding of the universe ''V'' into an inner model ''M'', and λ is the smallest fixed point of ''j'' above the critical point κ of ''j'', then ''M'' does not contain the set ''j'' "λ (the image of ''j'' restricted to λ). *There is no ω-huge cardinal. *There is no non-trivial elementary embedding of ''V''λ+2 into itself. It is not known if Kunen's theorem still holds in ZF (ZFC without the axiom of choice), though showed that there is no definable elementary embedding from ''V'' into ''V''. That is there is no formula ''J'' in the language of set theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vopěnka's Principle
In mathematics, Vopěnka's principle is a large cardinal axiom. The intuition behind the axiom is that the set-theoretical universe is so large that in every proper class, some members are similar to others, with this similarity formalized through elementary embeddings. Vopěnka's principle was first introduced by Petr Vopěnka and independently considered by H. Jerome Keisler, and was written up by . According to , Vopěnka's principle was originally intended as a joke: Vopěnka was apparently unenthusiastic about large cardinals and introduced his principle as a bogus large cardinal property, planning to show later that it was not consistent. However, before publishing his inconsistency proof he found a flaw in it. Definition Vopěnka's principle asserts that for every proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ''transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]