HOME
*



picture info

Holonomic Constraint
In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: :f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are the ''n'' generalized coordinates that describe the system. For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation :r^2-a^2=0 where r is the distance from the centre of a sphere of radius a, whereas the second non-holonomic case may be given by :r^2 - a^2 \geq 0 Velocity-dependent constraints (also called semi-holonomic constraints) such as :f(u_1,u_2,\ldots,u_n,\dot_1,\dot_2,\ldots,\dot_n,t)=0 are not usually holonomic. Holonomic system In classical mechanics a system may be defined as holonomic if all constraints ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomic Constraints
In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: :f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are the ''n'' generalized coordinates that describe the system. For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation :r^2-a^2=0 where r is the distance from the centre of a sphere of radius a, whereas the second non-holonomic case may be given by :r^2 - a^2 \geq 0 Velocity-dependent constraints (also called semi-holonomic constraints) such as :f(u_1,u_2,\ldots,u_n,\dot_1,\dot_2,\ldots,\dot_n,t)=0 are not usually holonomic. Holonomic system In classical mechanics a system may be defined as holonomic if all constraints ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Holonomic Constraints
In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: :f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are the ''n'' generalized coordinates that describe the system. For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation :r^2-a^2=0 where r is the distance from the centre of a sphere of radius a, whereas the second non-holonomic case may be given by :r^2 - a^2 \geq 0 Velocity-dependent constraints (also called semi-holonomic constraints) such as :f(u_1,u_2,\ldots,u_n,\dot_1,\dot_2,\ldots,\dot_n,t)=0 are not usually holonomic. Holonomic system In classical mechanics a system may be defined as holonomic if all constraints ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scleronomous
A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable and the equation of constraints can be described by generalized coordinates. Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous. Application In 3-D space, a particle with mass m\,\!, velocity \mathbf\,\! has kinetic energy T\,\! :T =\fracm v^2 \,\!. Velocity is the derivative of position r\,\! with respect to time t\,\!. Use chain rule for several variables: :\mathbf=\frac=\sum_i\ \frac\dot_i+\frac\,\!. where q_i\,\! are generalized coordinates. Therefore, :T =\fracm \left(\sum_i\ \frac\dot_i+\frac\right)^2\,\!. Rearranging the terms carefully, :T =T_0+T_1+T_2\,\!: :T_0=\fracm\left(\frac\right)^2\,\!, :T_1=\sum_i\ m\frac\cdot \frac\dot_i\,\!, :T_2=\sum_\ \fracm\frac\cdot \frac\dot_i\dot_j\,\!, where T_0\,\!, T_1\,\!, T_2\,\! are respectively homogeneous functions of degree 0, 1, and 2 in generalized velocities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The earliest development of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts based on foundational works of Sir Isaac Newton, and the mathematical methods invented by Gottfried Wilhelm Leibniz, Joseph-Louis Lagrange, Leonhard Euler, and other contemporaries, in the 17th century to describe the motion of bodies under the influence of a system of forces. Later, more abstract methods were developed, leading to the reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advance ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goryachev–Chaplygin Top
In classical mechanics, the precession of a rigid body such as a spinning top under the influence of gravity is not, in general, an integrable problem. There are however three (or four) famous cases that are integrable, the Euler, the Lagrange, and the Kovalevskaya top.. In addition to the energy, each of these tops involves three additional constants of motion that give rise to the integrability. The Euler top describes a free top without any particular symmetry, moving in the absence of any external torque in which the fixed point is the center of gravity. The Lagrange top is a symmetric top, in which two moments of inertia are the same and the center of gravity lies on the symmetry axis. The Kovalevskaya topPerelemov, A. M. (2002). ''Teoret. Mat. Fiz.'', Volume 131, Number 2, pp. 197–205. is a special symmetric top with a unique ratio of the moments of inertia which satisfy the relation : I_1=I_2= 2 I_3, That is, two moments of inertia are equal, the third is half as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonholonomic System
A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space (the parameters varying continuously in values) but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics. Details More precisely, a nonholonomic system, also called an ''anholonomic'' system, is one in which there is a continuous closed circuit of the governing parameters, by which the system may be transformed from any given state to any other state. Because the final state of the system depends on the intermediate values of its trajectory through parameter space, the system cannot be represented by a conserva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamilton's Principle
In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the '' differential'' equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories. Mathematical formulation Hamilton's principle states that the true evolution of a system described by generalized coordinates between two specified states and at two specified times and is a stationary point (a point where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monogenic System
In classical mechanics, a physical system is termed a monogenic system if the force acting on the system can be modelled in a particular, especially convenient mathematical form. The systems that are typically studied in physics are monogenic. The term was introduced by Cornelius Lanczos in his book ''The Variational Principles of Mechanics'' (1970). In Lagrangian mechanics, the property of being monogenic is a necessary condition for certain different formulations to be mathematically equivalent. If a physical system is both a holonomic system and a monogenic system, then it is possible to derive Lagrange's equations from d'Alembert's principle; it is also possible to derive Lagrange's equations from Hamilton's principle. Mathematical definition In a physical system, if all forces, with the exception of the constraint forces, are derivable from the generalized scalar potential, and this generalized scalar potential is a function of generalized coordinates, generalized velo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Non-holonomic System
A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space (the parameters varying continuously in values) but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics. Details More precisely, a nonholonomic system, also called an ''anholonomic'' system, is one in which there is a continuous closed circuit of the governing parameters, by which the system may be transformed from any given state to any other state. Because the final state of the system depends on the intermediate values of its trajectory through parameter space, the system cannot be represented by a conserva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 397,  §7.2.1 Selection of generalized coordinates/ref> The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum. Although there may be many possible choices for generalized coordinates for a physical system, they are generally selected to simplify calculations, such as the solution of the equations of motion for the system. If the coordinates are independent of one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]