Hodoscope
   HOME
*





Hodoscope
A hodoscope (from the Greek "hodos" for way or path, and "skopos" an observer) is an instrument used in particle detectors to detect passing charged particles and determine their trajectories. Hodoscopes are characterized by being made up of many segments; the combination of which segments record a detection is then used to infer where the particle passed through hodoscope. The typical detector segment is a piece of scintillating material, which emits light when a particle passes through it. The scintillation light can be converted to an electrical signal either by a photomultiplier tube (PMT) or a PIN diode. If a segment measures some significant amount of light, the experimenter can infer that a particle passed through that segment. In addition to coordinate information, for some systems the strength of the light can be proportional to the deposited energy. By doing necessary calibrations, the deposited energy can be determined, which then can be used to infer information ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Detector
In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the particle energy and other attributes such as momentum, spin, charge, particle type, in addition to merely registering the presence of the particle. Examples and types Many of the detectors invented and used so far are ionization detectors (of which gaseous ionization detectors and semiconductor detectors are most typical) and scintillation detectors; but other, completely different principles have also been applied, like Čerenkov light and transition radiation. Historical examples *Bubble chamber * Wilson cloud chamber (diffusion chamber) * Photographic plate ;Detectors for radiation protection The following types of particle detector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scintillator
A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbed energy in the form of light). Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed (necessitating anywhere from a few nanoseconds to hours depending on the material). The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon. Principle of operation A scintillation detector or scintillation counter is obtained when a scintillator is coupled to an electronic light sensor such as a photomultiplier tube (PMT), photodiode, or silicon photomultiplier. PMTs absorb the light emitted by the scintillator and re-emit it in the form of ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photomultiplier
A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for short) are members of the class of vacuum tubes, and more specifically vacuum phototubes, which are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. ** Magnetic photomultiplier, developed by the Soviets in the 1930s. ** Electrostatic photomultiplier, a kind of photomultiplier tube demonstrated by Jan Rajchman of RCA Laboratories in Princeton, NJ in the late 1930s which became the standard for all future commercial photomultipliers. The first mass-produced photomultiplier, the Type 931, was of this design and is still commercially produced today. * Silicon photomultiplier, a solid-state device converting incident photons into an electric signal. Silicon photomultiplie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PIN Diode
A pin is a device used for fastening objects or material together. Pin or PIN may also refer to: Computers and technology * Personal identification number (PIN), to access a secured system ** PIN pad, a PIN entry device * PIN, a former Dutch debit card system * An image on Pinterest * PIN diode, a semiconductor diode * Pin, a short lead in electronics * Pinning, the act of attaching a social media post to the top of a page to signify importance * To pin an object to another object in interface, such as pinning an application to the taskbar * Pin (computer program), a platform for creating analysis tools Awards, brooches, or fasteners * Award pin, recognising an achievement * Bobby pin or kirby grip or hair grip, a hairpin * Clevis pin, a three-piece fastener system * Collar pin, for a shirt collar * Drawing pin or thumbtack * Lapel pin, a small pin worn on clothing * Pin-back button, a badge fastened to garments with a safety pin. * Safety pin, pin which includes a simple spring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drift Chamber
A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization. was located via Dr. C.N. BootPHY304 Particle Physics Sheffield University/ref> Description The multi-wire chamber uses an array of wires at high voltage (anode), which run through a chamber with conductive walls held at ground potential (cathode). Alternatively, the wires may be at ground potential and the cathode held at a high negative voltage; the important thing is that a uniform electric field draws extra electrons or negative ions to the anode wires with little lateral motion. The chamber is filled with carefully chosen gas, such as an argon/methane mix, such that any ionizing particle that passes through the tube will ionize surrounding gaseous atoms. The resulting ions and electrons are accelerated by the electric field across the chamber, causi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Projection Chamber
In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction. The original design The original TPC was invented by David R. Nygren, an American physicist, at Lawrence Berkeley Laboratory in the late 1970s. Its first major application was in the PEP-4 detector, which studied 29 GeV electron–positron collisions at the PEP storage ring at SLAC. A time projection chamber consists of a gas-filled detection volume in an electric field with a position-sensitive electron collection system. The original design (and the one most commonly used) is a cylindrical chamber with multi-wire proportional chambers (MWPC) as endplates. Along its length, the chamber is divided into halves by means of a central high-voltage electrode disc, which establishes an electric field between the ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]