Half-light Radius
Galaxy effective radius or half-light radius (R_e) is the radius at which half of the total light of a galaxy is emitted. This assumes the galaxy has either intrinsic circular symmetry, spherical symmetry or is at least circularly symmetric as viewed in the plane of the sky. Alternatively, a half-light Contour line, contour, or Contour line#Other phenomena, isophote, may be used for spherically and circularly asymmetric objects. R_e is an important length scale in \sqrt[4] R term in de Vaucouleurs's law, which characterizes a specific rate at which surface brightness decreases as a function of radius: I(R) = I_e \cdot e^ where I_e is the surface brightness at R = R_e. At R = 0, I(R=0) = I_e \cdot e^ \approx 2000 \cdot I_e Thus, the central surface brightness is approximately 2000 \cdot I_e. See also References Physical quantities Radii Equations of astronomy {{astronomy-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half Light Radius Simple
One half is the multiplicative inverse of 2. It is an irreducible fraction with a numerator of 1 and a denominator of 2. It often appears in mathematical equations, recipes and measurements. As a word One half is one of the few fractions which are commonly expressed in natural languages by suppletion rather than regular derivation. In English language, English, for example, compare the compound word, compound "one half" with other regular formations like "one-sixth". A ''half'' can also be said to be one part of something divided into two equal parts. It is acceptable to write one half as a Hyphen, hyphenated word, ''one-half''. Mathematics One half is the rational number that lies midway between 0 and 1 on the number line. Multiplication by one half is equivalent to division by two, or "halving"; conversely, division by one half is equivalent to multiplication by two, or "doubling". A number raised to the Exponentiation, power of one half is equal to its square root ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radius
In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is the line segment or distance from its center to any of its Vertex (geometry), vertices. The name comes from the Latin ''radius'', meaning ray but also the spoke of a chariot wheel.Definition of Radius at dictionary.reference.com. Accessed on 2009-08-08. The typical abbreviation and mathematical symbol for radius is ''R'' or ''r''. By extension, the diameter ''D'' is defined as twice the radius:Definition of radius at mathwords.com. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Light
Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequency, frequencies of 750–420 terahertz (unit), terahertz. The visible band sits adjacent to the infrared (with longer wavelengths and lower frequencies) and the ultraviolet (with shorter wavelengths and higher frequencies), called collectively ''optical radiation''. In physics, the term "light" may refer more broadly to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays, X-rays, microwaves and radio waves are also light. The primary properties of light are intensity (physics), intensity, propagation direction, frequency or wavelength spectrum, and polarization (waves), polarization. Its speed of light, speed in vacuum, , is one of the fundamental physi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galaxy
A galaxy is a Physical system, system of stars, stellar remnants, interstellar medium, interstellar gas, cosmic dust, dust, and dark matter bound together by gravity. The word is derived from the Ancient Greek, Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarf galaxy, dwarfs with less than a thousand stars, to the List of largest galaxies, largest galaxies known – Type-cD galaxy, supergiants with one hundred 10^12, trillion stars, each orbiting its galaxy's centre of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few per cent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies. Galaxies are categorised according to their visual morphology (astronomy), morphology as elliptical galaxy, elliptical, Spiral galaxy, spiral, or irregular galaxy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circular Symmetry
In geometry, circular symmetry is a type of continuous symmetry for a Plane (geometry), planar object that can be rotational symmetry, rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2). Two dimensions A 2-dimensional object with circular symmetry would consist of concentric circles and Annulus (mathematics), annular domains. Rotational circular symmetry has all cyclic symmetry, Z''n'' as subgroup symmetries. Reflective circular symmetry has all dihedral symmetry, Dih''n'' as subgroup symmetries. Three dimensions In 3-dimensions, a surface of revolution, surface or solid of revolution has circular symmetry around an axis, also called cylindrical symmetry or axial symmetry. An example is a right circular cone. Circular symmetry in 3 dimensions has all ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contour Line
A contour line (also isoline, isopleth, isoquant or isarithm) of a Function of several real variables, function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a cross-section (geometry)#Definition, plane section of the graph of a function of two variables, three-dimensional graph of the function f(x,y) parallel to the (x,y)-plane. More generally, a contour line for a function of two variables is a curve connecting points where the function has the same particular value. In cartography, a contour line (often just called a "contour") joins points of equal elevation (height) above a given level, such as mean sea level. A contour map is a map illustrated with contour lines, for example a topographic map, which thus shows valleys and hills, and the steepness or gentleness of slopes. The contour interval of a contour map is the difference in elevation between successive contour lines. The gradient of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Vaucouleurs's Law
In astronomy, de Vaucouleurs's law, also known as the de Vaucouleurs profile or de Vaucouleurs model, describes how the surface brightness I of an elliptical galaxy varies as a function of apparent distance R from the center of the galaxy: \ln I(R) = \ln I_ - k R^. By defining ''Re'' as the radius of the isophote containing half of the total luminosity of the galaxy, the half-light radius Galaxy effective radius or half-light radius (R_e) is the radius at which half of the total light of a galaxy is emitted. This assumes the galaxy has either intrinsic circular symmetry, spherical symmetry or is at least circularly symmetric as vi ..., de Vaucouleurs profile may be expressed as: \ln I(R) = \ln I_ + 7.669 \left 1 - \left( \frac \right)^ \right or I(R) = I_ e^ where ''Ie'' is the surface brightness at ''Re''. This can be confirmed by noting \int^_0 I(r)2\pi r \, dr = \frac \int^_0 I(r)2\pi r \, dr . De Vaucouleurs model is a special case of Sersic's model, with a Sersi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface Brightness
In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area. In visible and infrared astronomy, surface brightness is often quoted on a magnitude scale, in magnitudes per square arcsecond (MPSAS) in a particular filter band or photometric system. Measurement of the surface brightnesses of celestial objects is called surface photometry. General description The total magnitude is a measure of the brightness of an extended object such as a nebula, cluster, galaxy or comet. It can be obtained by summing up the luminosity over the area of the object. Alternatively, a photometer can be used by applying apertures or slits of different sizes of diameter. The background light is then subtracted from the measurement to obt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Airy Disk
In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best-focus (optics), focused Point source#Light, spot of light that a perfect lens (optics), lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy. The diffraction pattern resulting from a uniformly illuminated, circular aperture has a bright circle of confusion, central region, known as the Airy disk, which together with the series of concentric objects, concentric rings around is called the Airy pattern. Both are named after George Biddell Airy. The disk and rings phenomenon had been known prior to Airy; John Herschel described the appearance of a bright star seen through a telescope under high magnification for an 1828 article on light for the ''Encyclopedia Metropolitana'': Airy wrote the first full theoretical treatment explaining the phenomenon (his 1835 "On the Diffraction of an Object-glass with Circul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptical Galaxy
An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the three main galaxy morphological classification, classes of galaxy described by Edwin Hubble in his Hubble sequence#Physical significance, Hubble sequence and 1936 work ''The Realm of the Nebulae'', with their intermediate scale disks, a subset of the "early-type" galaxy population. Most elliptical galaxies are composed of older, stellar evolution#Low-mass stars, low-mass stars, with a sparse interstellar medium, and they tend to be surrounded by large numbers of globular clusters. Star formation activity in elliptical galaxies is typically minimal; they may, however, undergo brief periods of star formation when merging with other galaxies. Elliptical galaxies are believed to make up approximately 10–15% of galaxies in the Virgo Supercluster, and they are not the dominant type of galaxy in the universe overall. They are preferentially fou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Globular Cluster
A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxy, dwarf spheroidal galaxies, and though globular clusters were long held to be the more luminous of the two, discoveries of outliers had made the distinction between the two less clear by the early 21st century. Their name is derived from Latin (small sphere). Globular clusters are occasionally known simply as "globulars". Although one globular cluster, Omega Centauri, was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with the advent of telescopes in the 17th century. In early telescopic observations, globular clusters appeared as fuzzy blobs, leading French astronomer Charles Messier to incl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Cluster
An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. Each one is loosely bound by mutual gravity, gravitational attraction and becomes disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a loss of cluster members through internal close encounters and a dispersion into the main body of the galaxy. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral galaxy, spiral and irregular galaxy, irregular galaxies, in which active star formatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |