Gain Graph
A gain graph is a graph whose edges are labelled "invertibly", or "orientably", by elements of a group ''G''. This means that, if an edge ''e'' in one direction has label ''g'' (a group element), then in the other direction it has label ''g'' −1. The label function ''φ'' therefore has the property that it is defined differently, but not independently, on the two different orientations, or directions, of an edge ''e''. The group ''G'' is called the gain group, ''φ'' is the gain function, and the value ''φ''(''e'') is the gain of ''e'' (in some indicated direction). A gain graph is a generalization of a signed graph, where the gain group ''G'' has only two elements. See Zaslavsky (1989, 1991). A gain should not be confused with a weight on an edge, whose value is independent of the orientation of the edge. Applications Some reasons to be interested in gain graphs are their connections to network flow theory in combinatorial optimization, to geometry, and to physic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Graph (discrete Mathematics)
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Thomas Zaslavsky
Thomas Zaslavsky (born 1944) is an American mathematician specializing in combinatorics. Zaslavsky's mother Claudia Zaslavsky was a high school mathematics teacher and an ethnomathematician in New York; his father Sam Zaslavsky (from Manhattan) was an electrical engineer. Thomas Zaslavsky graduated from the City College of New York. At M.I.T. he studied hyperplane arrangements with Curtis Greene and received a Ph.D. in 1974. In 1975 the American Mathematical Society published his doctoral thesis. Zaslavsky has been a professor of mathematics at Binghamton University, New York since 1985. He has published papers on matroid theory and hyperplane arrangements. He has also written on coding theory, lattice point counting, and Sperner theory. Zaslavsky has made available a bibliography on signed graph In the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign. A signed graph is balanced if the product of edge signs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Matroid Theory
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Voltage Graph
In graph theory, a voltage graph is a directed graph whose edges are labelled invertibly by elements of a group. It is formally identical to a gain graph, but it is generally used in topological graph theory as a concise way to specify another graph called the derived graph of the voltage graph. Typical choices of the groups used for voltage graphs include the two-element group \mathbb_2 (for defining the bipartite double cover of a graph), free groups (for defining the universal cover of a graph), ''d''-dimensional integer lattices \mathbb^d (viewed as a group under vector addition, for defining periodic structures in ''d''-dimensional Euclidean space),; ; . and finite cyclic groups \mathbb for ''n'' > 2. When is a cyclic group, the voltage graph may be called a ''cyclic-voltage graph''. Definition Formal definition of a -voltage graph, for a given group : * Begin with a digraph ''G''. (The direction is solely for convenience in notation.) * A -voltage on an arc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Graph Embedding
In topological graph theory, an embedding (also spelled imbedding) of a graph G on a surface \Sigma is a representation of G on \Sigma in which points of \Sigma are associated with vertices and simple arcs (homeomorphic images of ,1/math>) are associated with edges in such a way that: * the endpoints of the arc associated with an edge e are the points associated with the end vertices of e, * no arcs include points associated with other vertices, * two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a connected 2-manifold. Informally, an embedding of a graph into a surface is a drawing of the graph on the surface in such a way that its edges may intersect only at their endpoints. It is well known that any finite graph can be embedded in 3-dimensional Euclidean space \mathbb^3.. A planar graph is one that can be embedded in 2-dimensional Euclidean space \mathbb^2. Often, an embedding is regarded as an equivalence class (under home ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Topological Graph Theory
In mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. It also studies immersions of graphs. Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges intersecting. A basic embedding problem often presented as a mathematical puzzle is the three utilities problem. Other applications can be found in printing electronic circuits where the aim is to print (embed) a circuit (the graph) on a circuit board (the surface) without two connections crossing each other and resulting in a short circuit. Graphs as topological spaces To an undirected graph we may associate an abstract simplicial complex ''C'' with a single-element set per vertex and a two-element set per edge. The geometric realization , ''C'', of the complex consists of a copy of the unit interval ,1per edge, with the endpoints ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Spin Glass
In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called the "freezing temperature," ''T''f. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as " disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random. A spin glass should not be confused with a " spin-on glass". The latter is a thin film, usually based on SiO2, which is applied via spin coating. The term "glass" comes from an analogy between the ''magnetic'' disorder in a spin glass and the ''positional'' disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solids, magnetic sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Ground State
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum. If more than one ground state exists, they are said to be degenerate. Many systems have degenerate ground states. Degeneracy occurs whenever there exists a unitary operator that acts non-trivially on a ground state and commutes with the Hamiltonian of the system. According to the third law of thermodynamics, a system at absolute zero temperature exists in its ground state; thus, its entropy is determined by the degeneracy of the ground state. Many systems, such as a perfect crystal lattice, have a unique ground state and therefore have zero entropy at absolute zero. It is also possible for the highest excited state to have absolute zero temperature for sys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line. Most commonly, the ambient space is -dimensional Euclidean space, in which case the hyperplanes are the -dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion ( geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces. In non-Euclidean geometry, the ambient space might be the -dimensional sphere or hyperbolic space, or more generally a pseudo-Riemannian space form, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Biased Graph
{{Short description, Graph with a list of distinguished cycles In mathematics, a biased graph is a graph with a list of distinguished circles (edge sets of simple cycles), such that if two circles in the list are contained in a theta graph, then the third circle of the theta graph is also in the list. A biased graph is a generalization of the combinatorial essentials of a gain graph and in particular of a signed graph. Formally, a biased graph Ω is a pair (''G'', ''B'') where ''B'' is a linear class of circles; this by definition is a class of circles that satisfies the theta-graph property mentioned above. A subgraph or edge set whose circles are all in ''B'' (and which contains no half-edges) is called balanced. For instance, a circle belonging to ''B'' is ''balanced'' and one that does not belong to ''B'' is ''unbalanced''. Biased graphs are interesting mostly because of their matroids, but also because of their connection with multiary quasigroups. See below. Technical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |