Four-gradient
In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. Notation This article uses the metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. c indicates the speed of light in vacuum. \eta_ = \operatorname ,-1,-1,-1/math> is the flat spacetime metric of SR. There are alternate ways of writing four-vector expressions in physics: * The four-vector style can be used: \mathbf \cdot \mathbf, which is typically more compact and can use vector notation, (such as the inner product "dot"), always using bold uppercase to represent the four-vector, and bold lowercase to represent 3-space vectors, e.g. \vec \cdot \vec. Most of the 3-space vector rules have analogues in four-vector ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four-vector
In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (,) representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts (a change by a constant velocity to another inertial reference frame). Four-vectors describe, for instance, position in spacetime modeled as Minkowski space, a particle's four-momentum , the amplitude of the electromagnetic four-potential at a point in spacetime, and the elements of the subspace spanned by the gamma matrices inside the Dirac algebra. The Lorentz group may be represented by 4×4 matrices . The act ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of f. If the gradient of a function is non-zero at a point p, the direction of the gradient is the direction in which the function increases most quickly from p, and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function f(\mathbf) may be defined by: df=\nabla f \cdot d\mathbf where df is the total infinitesimal change in f for a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4-position
In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (,) representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts (a change by a constant velocity to another inertial reference frame). Four-vectors describe, for instance, position in spacetime modeled as Minkowski space, a particle's four-momentum , the amplitude of the electromagnetic four-potential at a point in spacetime, and the elements of the subspace spanned by the gamma matrices inside the Dirac algebra. The Lorentz group may be represented by 4×4 matrices . The action ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
D'Alembert Operator
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates , it has the form : \begin \Box & = \partial^\mu \partial_\mu = \eta^ \partial_\nu \partial_\mu = \frac \frac - \frac - \frac - \frac \\ & = \frac - \nabla^2 = \frac - \Delta ~~. \end Here \nabla^2 := \Delta is the 3-dimensional Laplacian and is the inverse Minkowski metric with :\eta_ = 1, \eta_ = \eta_ = \eta_ = -1, \eta_ = 0 for \mu \neq \nu. Note that the and summation indices range from 0 to 3: see Einstein notation. (Some authors alternatively use the negative metric signature of , with \eta_ = -1,\; \eta_ = \eta_ = \eta_ = 1.) Lorentz transformations leave the Mi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four-current
In special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of ''four-dimensional spacetime'', rather than separating time from three-dimensional space. Mathematically it is a four-vector and is Lorentz covariant. This article uses the summation convention for indices. See covariance and contravariance of vectors for background on raised and lowered indices, and raising and lowering indices on how to switch between them. Definition Using the Minkowski metric \eta_ of metric signature , the four-current components are given by: :J^\alpha = \left(c \rho, j^1 , j^2 , j^3 \right) = \left(c \rho, \mathbf \right) where: * is the speed of light; * is the volume charge density; * is the conventional current density; *The dummy index labels the spacetime dimensions. Motion of ch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Current Sources And Sinks
In the physical sciences, engineering and mathematics, sources and sinks is an analogy used to describe properties of vector fields. It generalizes the idea of fluid sources and sinks (like the Tap (valve), faucet and Drain (plumbing), drain of a bathtub) across different scientific disciplines. These terms describe points, regions, or entities where a vector field originates or terminates. This analogy is usually invoked when discussing the continuity equation, the divergence of the field and the divergence theorem. The analogy sometimes includes swirls and saddles for points that are neither of the two. In the case of electric fields the idea of flow is replaced by field lines and the sources and sinks are electric charges. Description and fluid dynamics analogy In physics, a vector field \mathbf b(x,y,z) is a function that returns a Vector (mathematics and physics), vector and is defined for each point (with coordinates x,y,z) in a region of space. The idea of sources and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point. The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be thought of as representing the velocit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Operator
A vector operator is a differential operator used in vector calculus. Vector operators include: * Gradient is a vector operator that operates on a scalar field, producing a vector field. * Divergence is a vector operator that operates on a vector field, producing a scalar field. * Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: :\begin \operatorname &\equiv \nabla \\ \operatorname &\equiv \nabla \cdot \\ \operatorname &\equiv \nabla \times \end The Laplacian operates on a scalar field, producing a scalar field: : \nabla^2 \equiv \operatorname\ \operatorname \equiv \nabla \cdot \nabla Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result. E.g. : \nabla f yields the gradient of ''f'', but : f \nabla is just another vector operator, which is not operating on anything. A vector operator can operate on another vector operator, to produce a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to area.) More precisely, the divergence at a point is the rate that the flow of the vector field modifies a volume about the point ''in the limit'', as a small volume shrinks down to the point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value. While the air is cooled and thus contracting, the divergence of the velocity has a negative value. Physical interpretation of divergence In physical terms, the divergence of a vector field is the extent to which the vector fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Equivalence Principle
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times. The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects. Highly precise experimental tests of the principle limit possible deviations from equivalence to be very small. Concept In classical mechanics, Newton's equation of motion in a gravitational field, written out in full, is: : inertial mass × acceleration = gravitational mass × gravitational acceleration Careful experiments have shown that the inertial mass on the left side and gravitationa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |