Four-current
In special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of ''four-dimensional spacetime'', rather than separating time from three-dimensional space. Mathematically it is a four-vector and is Lorentz covariant. This article uses the summation convention for indices. See covariance and contravariance of vectors for background on raised and lowered indices, and raising and lowering indices on how to switch between them. Definition Using the Minkowski metric \eta_ of metric signature , the four-current components are given by: :J^\alpha = \left(c \rho, j^1 , j^2 , j^3 \right) = \left(c \rho, \mathbf \right) where: * is the speed of light; * is the volume charge density; * is the conventional current density; *The dummy index labels the spacetime dimensions. Motion of ch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four-vector
In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (,) representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts (a change by a constant velocity to another inertial reference frame). Four-vectors describe, for instance, position in spacetime modeled as Minkowski space, a particle's four-momentum , the amplitude of the electromagnetic four-potential at a point in spacetime, and the elements of the subspace spanned by the gamma matrices inside the Dirac algebra. The Lorentz group may be represented by 4×4 matrices . The act ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electromagnetic Field Tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was developed by Arnold Sommerfeld after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below. Definition The electromagnetic tensor, conventionally labelled ''F'', is defined as the exterior derivative of the electromagnetic four-potential, ''A'', a differential 1-form: :F \ \stackrel\ \mathrmA. Therefore, ''F'' is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form, :F_ = \partial_\mu A_\nu - \partial_\nu A_\mu. where \partial is the four-gradien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Volume Charge Density
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative. Like mass density, charge density can vary with position. In classical electromagnetic theory charge density is idealized as a ''continuous'' scalar function of position \boldsymbol, like a fluid, and \rho(\boldsymbol) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four-potential
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, As measured in a given frame of reference, and for a given gauge, the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the magnetic vector potential. While both the scalar and vector potential depend upon the frame, the electromagnetic four-potential is Lorentz covariant. Like other potentials, many different electromagnetic four-potentials correspond to the same electromagnetic field, depending upon the choice of gauge. This article uses tensor index notation and the Minkowski metric sign convention . See also covariance and contravariance of vectors and raising and lowering ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charge Density
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative. Like mass density, charge density can vary with position. In classical electromagnetic theory charge density is idealized as a '' continuous'' scalar function of position \boldsymbol, like a fluid, and \rho(\boldsymbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charge Conservation
In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always '' conserved''. Charge conservation, considered as a physical conservation law, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. In essence, charge conservation is an accounting relationship between the amount of charge in a region and the flow of charge into and out of that region, given by a continuity equation between charge density \rho(\mathbf) and current density \mathbf(\mathbf). This does not mean that individual positive and negative charges cannot be created or destroyed. Electric charge is carried by subatomic particles such as electrons and proton ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just Postulates of special relativity, two postulates: # The laws of physics are Invariant (physics), invariant (identical) in all Inertial frame of reference, inertial frames of reference (that is, Frame of reference, frames of reference with no acceleration). This is known as the principle of relativity. # The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance. The first postulate was first formulated by Galileo Galilei (see ''Galilean invariance''). Background Special relativity builds upon important physics ide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Invariant
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged. A simple Lorentz scalar in Minkowski spacetime is the ''spacetime distance'' ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation. Other examples of Lorentz scalars are the "length" of 4-velocities (see below), or the Ricci curvature in a point in spacetime from general relativity, which is a contraction of the Riemann curvature tensor there. Simple scalars in special relativity Length of a position vector In special relati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Velocity
Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical quantity, quantity, meaning that both magnitude and direction are needed to define it. The Scalar (physics), scalar absolute value (Magnitude (mathematics), magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the International System of Units, SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Definition Average velocity The average velocity of an object over a period of time is its Displacement (geometry), change in position, \Delta s, divided by the duration of the period, \Delt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Contraction
Lorentz is a name derived from the Roman surname, Laurentius, which means "from Laurentum". It is the German form of Laurence. Notable people with the name include: Given name * Lorentz Aspen (born 1978), Norwegian heavy metal pianist and keyboardist * Lorentz Dietrichson (1834–1917), Norwegian poet and historian of art and literature * Lorentz Eichstadt (1596–1660), German mathematician and astronomer * Lorentz Harboe Ree (1888–1962), Norwegian architect * Lorentz Lange (1783–1860), Norwegian judge and politician * Lorentz Reige (born 1990), Swedish dancer * Lorentz Reitan (born 1946), Norwegian musicologist Mononym * Lorentz (rapper), real name Lorentz Alexander, Swedish singer and rapper Surname * Dominique Lorentz, French investigative journalist who has written books on nuclear proliferation * Friedrich Lorentz, author of works on the Pomeranian language * Geertruida de Haas, née Lorentz, Dutch physicist * Hendrik Antoon Lorentz (1853–1928), Dutch physicis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Derivative
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between two random variables or data sets * Autocovariance, the covariance of a signal with a time-shifted version of itself * Covariance function, a function giving the covariance of a random field with itself at two locations Algebra and geometry * A covariant (invariant theory) is a bihomogeneous polynomial in and the coefficients of some homogeneous form in that is invariant under some group of linear transformations. * Covariance and contravariance of vectors, properties of how vector coordinates change under a change of basis ** Covariant transformation, a rule that describes how certain physical entities change under a change of coordinate system * Covariance and contravariance of functors, properties of functors * General covariance ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four-gradient
In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. Notation This article uses the metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. c indicates the speed of light in vacuum. \eta_ = \operatorname ,-1,-1,-1/math> is the flat spacetime metric of SR. There are alternate ways of writing four-vector expressions in physics: * The four-vector style can be used: \mathbf \cdot \mathbf, which is typically more compact and can use vector notation, (such as the inner product "dot"), always using bold uppercase to represent the four-vector, and bold lowercase to represent 3-space vectors, e.g. \vec \cdot \vec. Most of the 3-space vector rules have analogues in four-vector ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |