HOME





Folded Normal Distribution
The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable ''X'' with mean ''μ'' and variance ''σ''2, the random variable ''Y'' = , ''X'', has a folded normal distribution. Such a case may be encountered if only the magnitude of some variable is recorded, but not its sign. The distribution is called "folded" because probability mass to the left of ''x'' = 0 is folded over by taking the absolute value. In the physics of heat conduction, the folded normal distribution is a fundamental solution of the heat equation on the half space; it corresponds to having a perfect insulator on a hyperplane through the origin. Definitions Density The probability density function (PDF) is given by :f_Y(x;\mu,\sigma^2)= \frac \, e^ + \frac \, e^ for ''x'' ≥ 0, and 0 everywhere else. An alternative formulation is given by : f\left(x \right)=\sqrte^\cosh, where cosh is the Hyperbolic cosine function. It fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Folded Normal Pdf
Fold, folding or foldable may refer to: Arts, entertainment, and media *Fold (album), ''Fold'' (album), the debut release by Australian rock band Epicure *Fold (poker), in the game of poker, to discard one's hand and forfeit interest in the current pot *Above the fold and below the fold, the positioning of news items on a newspaper's front page according to perceived importance *Paper folding, or ''origami'', the art of folding paper Science, technology, and mathematics Biology *Protein folding, the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure **Folding@home, a powerful distributed-computing project for simulating protein folding *Fold coverage, quality of a DNA sequence *Skin fold, an area of skin that folds Computing *Fold (higher-order function), a type of programming operation on data structures *fold (Unix), a computer program used to wrap lines to fit in a specified width *Folding (DSP implementation), a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error Function
In mathematics, the error function (also called the Gauss error function), often denoted by , is a function \mathrm: \mathbb \to \mathbb defined as: \operatorname z = \frac\int_0^z e^\,\mathrm dt. The integral here is a complex Contour integration, contour integral which is path-independent because \exp(-t^2) is Holomorphic function, holomorphic on the whole complex plane \mathbb. In many applications, the function argument is a real number, in which case the function value is also real. In some old texts, the error function is defined without the factor of \frac. This nonelementary integral is a sigmoid function, sigmoid function that occurs often in probability, statistics, and partial differential equations. In statistics, for non-negative real values of , the error function has the following interpretation: for a real random variable that is normal distribution, normally distributed with mean 0 and standard deviation \frac, is the probability that falls in the range . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truncated Normal Distribution
In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics. Definitions Suppose X has a normal distribution with mean \mu and variance \sigma^2 and lies within the interval (a,b), \text \; -\infty \leq a < b \leq \infty . Then X conditional on a < X < b has a truncated normal distribution. Its , f, for a \leq x \leq b , is given by f(x;\mu,\sigma,a,b) = \frac\,\frac and by f=0 otherwise. Here, \varphi(\xi)=\frac\exp\ ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Half-normal Distribution
In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution. Let X follow an ordinary normal distribution, N(0,\sigma^2). Then, Y=, X, follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero. Properties Using the \sigma parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by : f_Y(y; \sigma) = \frac\exp \left( -\frac \right) \quad y \geq 0, where E = \mu = \frac. Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues if \sigma is near zero), obtained by setting \theta=\frac, the probability density function is given by : f_Y(y; \theta) = \frac\exp \left( -\frac \right) \quad y \geq 0, where E = \mu = \frac. The cumulative distribution function (CDF) is given by : F_Y(y; \sigma) = \int_0^y \frac\sqrt \, \exp \left( -\frac \rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Folded Cumulative Distribution
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) F \colon \mathbb R \rightarrow ,1/math> satisfying \lim_F(x)=0 and \lim_F(x)=1. In the case of a scalar continuous distribution, it gives the area under the probability density function from negative infinity to x. Cumulative distribution functions are also used to specify the distribution of multivariate random variables. Definition The cumulative distribution function of a real-valued random variable X is the function given by where the right-hand side represents the probability that the random variable X takes on a value less than or equal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R Programming/Optimization
R, or r, is the eighteenth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''ar'' (pronounced ), plural ''ars''. The letter is the eighth most common letter in English and the fourth-most common consonant, after , , and . Name The name of the letter in Latin was (), following the pattern of other letters representing continuants, such as , , , , and . This name is preserved in French and many other languages. In Middle English, the name of the letter changed from to , following a pattern exhibited in many other words such as ''farm'' (compare French ) and ''star'' (compare German ). In Hiberno-English, the letter is called or , somewhat similar to ''oar'', ''ore'', ''orr''. The letter R is sometimes referred to as the 'canine letter', often rendered in English as the dog's letter. This Latin term referred to the Latin that was trilled to sound li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R (programming Language)
R is a programming language for statistical computing and Data and information visualization, data visualization. It has been widely adopted in the fields of data mining, bioinformatics, data analysis, and data science. The core R language is extended by a large number of R package, software packages, which contain Reusability, reusable code, documentation, and sample data. Some of the most popular R packages are in the tidyverse collection, which enhances functionality for visualizing, transforming, and modelling data, as well as improves the ease of programming (according to the authors and users). R is free and open-source software distributed under the GNU General Public License. The language is implemented primarily in C (programming language), C, Fortran, and Self-hosting (compilers), R itself. Preprocessor, Precompiled executables are available for the major operating systems (including Linux, MacOS, and Microsoft Windows). Its core is an interpreted language with a na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modified Half-normal Distribution
In probability theory and statistics, the modified half-normal distribution (MHN) is a three-parameter family of continuous probability distributions supported on the positive part of the real line. It can be viewed as a generalization of multiple families, including the half-normal distribution, truncated normal distribution, gamma distribution, and square root of the gamma distribution, all of which are special cases of the MHN distribution. Therefore, it is a flexible probability model for analyzing real-valued positive data. The name of the distribution is motivated by the similarities of its density function with that of the half-normal distribution. In addition to being used as a probability model, MHN distribution also appears in Markov chain Monte Carlo (MCMC)-based Bayesian procedures, including Bayesian modeling of the directional data, Bayesian binary regression, and Bayesian graphical modeling. In Bayesian analysis, new distributions often appear as a conditional po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rice Distribution
In probability theory, the Rice distribution or Rician distribution (or, less commonly, Ricean distribution) is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986). Characterization The probability density function is : f(x\mid\nu,\sigma) = \frac\exp\left(\frac \right)I_0\left(\frac\right), where ''I''0(''z'') is the modified Bessel function of the first kind with order zero. In the context of Rician fading, the distribution is often also rewritten using the ''Shape Parameter'' K = \frac, defined as the ratio of the power contributions by line-of-sight path to the remaining multipaths, and the ''Scale parameter'' \Omega = \nu^2+2\sigma^2 , defined as the total power received in all paths. The characteristic function of the Rice distribution is given as: : \begin \chi_X(t\mid\nu,\sigma) = \exp \left( -\frac \right) & \left \Psi_2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Folded-t Distribution
In statistics, the folded-''t'' and half-''t'' distributions are derived from Student's ''t''-distribution by taking the absolute values of variates. This is analogous to the folded-normal and the half-normal statistical distributions being derived from the normal distribution. Definitions The folded non-standardized ''t'' distribution is the distribution of the absolute value of the non-standardized ''t'' distribution with \nu degrees of freedom; its probability density function is given by: :g\left(x\right)\;=\;\frac\left\lbrace \left +\frac\frac\right+\left +\frac\frac\right \right\rbrace \qquad(\mbox\quad x \geq 0). The half-''t'' distribution results as the special case of \mu=0, and the standardized version as the special case of \sigma=1. If \mu=0, the folded-''t'' distribution reduces to the special case of the half-''t'' distribution. Its probability density function then simplifies to :g\left(x\right)\;=\;\frac \left(1+\frac\frac\right)^ \qquad(\mbox\quad x \geq 0). Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noncentral Chi-squared Distribution
In probability theory and statistics, the noncentral chi-squared distribution (or noncentral chi-square distribution, noncentral \chi^2 distribution) is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is (perhaps asymptotically) a chi-squared distribution; important examples of such tests are the likelihood-ratio tests. Definitions Background Let (X_1,X_2, \ldots, X_i, \ldots,X_k) be ''k'' independent, normally distributed random variables with means \mu_i and unit variances. Then the random variable : \sum_^k X_i^2 is distributed according to the noncentral chi-squared distribution. It has two parameters: k which specifies the number of degrees of freedom (i.e. the number of X_i), and \lambda which is related to the mean of the random variables X_i by: : \lambda=\sum_^k \mu_i^2. \lambda is sometimes called the noncentrality parameter. Note that some references de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]