Equable Shape
A two-dimensional equable shape (or perfect shape) is one whose area is numerically equal to its perimeter. For example, a right angled triangle with sides 5, 12 and 13 has area and perimeter both have a unitless numerical value of 30. Scaling and units An area cannot be equal to a length except relative to a particular unit of measurement. For example, if shape has an area of 5 square yards and a perimeter of 5 yards, then it has an area of and a perimeter of 15 feet (since 3 feet = 1 yard and hence 9 square feet = 1 square yard). Moreover, contrary to what the name implies, changing the size while leaving the shape intact changes an "equable shape" into a non-equable shape. However its common use as GCSE coursework has led to its being an accepted concept. For any shape, there is a similar equable shape: if a shape ''S'' has perimeter ''p'' and area ''A'', then scaling ''S'' by a factor of ''p/A'' leads to an equa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two-dimensional
In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Lady's And Gentleman's Diary
''The Lady's and Gentleman's Diary'' was a recreational mathematics magazine formed as a successor of ''The Ladies' Diary'' and ''Gentleman's Diary'' in 1841. It was published annually between 1841 and 1871 by the Company of Stationers; its editor from 1844 to 1865 was Wesley S. B. Woolhouse. It consisted mostly of problems posed by its readers, with their solutions given in later volumes, though it also contained word puzzles and poetry. The magazine was based in London. It ceased publication in 1871. This should not be confused with ''Ladies and Gentlemens Diary, or Royal Almanack'' (1775 to 1786) which was printed by Thomas Carnan and edited by Reuben Burrow Reuben Burrow (30 December 1747 – 7 June 1792) was an English mathematician, surveyor and orientalist. Initially a teacher, he was appointed assistant to Sir Nevil Maskelyne, then astronomer-royal, at the Royal Greenwich Observatory and was ... and was a short lived competitor to ''The Ladies' Diary''. Kirkman's s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface Area
The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces. This definition of surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration. A general definition of surface area was sought by Henri Lebesgue and Hermann Minkowski at the turn of the twentieth century. Their work led to the development of geometric measure theory, which studies various notions of surface area for irregular objects of any dimension. An important example is the Minkows ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Three-dimensional Space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal meaning of the term dimension. In mathematics, a tuple of numbers can be understood as the Cartesian coordinates of a location in a -dimensional Euclidean space. The set of these -tuples is commonly denoted \R^n, and can be identified to the -dimensional Euclidean space. When , this space is called three-dimensional Euclidean space (or simply Euclidean space when the context is clear). It serves as a model of the physical universe (when relativity theory is not considered), in which all known matter exists. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a large variety of spaces in three dimensions called 3-manifolds. In this classical example, when the t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Even Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; othe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in '' Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rectangle
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a '' square''. The term " oblong" is occasionally used to refer to a non- square rectangle. A rectangle with vertices ''ABCD'' would be denoted as . The word rectangle comes from the Latin ''rectangulus'', which is a combination of ''rectus'' (as an adjective, right, proper) and ''angulus'' (angle). A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals (therefore only two sides are parallel). It is a special case of an antiparallelogram, and its angles are not right angles and not all equal, though opposite angles are equal. Other geometries, such as spherical, elliptic, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Allen Whitworth
William Allen Whitworth (1 February 1840 – 12 March 1905) was an English mathematician and a priest in the Church of England.. Education and mathematical career Whitworth was born in Runcorn; his father, William Whitworth, was a school headmaster, and he was the oldest of six siblings. He was schooled at the Sandicroft School in Northwich and then at St John's College, Cambridge, earning a B.A. in 1862 as 16th Wrangler. He taught mathematics at the Portarlington School and the Rossall School, and was a professor of mathematics at Queen's College in Liverpool from 1862 to 1864. He returned to Cambridge to earn a master's degree in 1865, and was a fellow there from 1867 to 1882. Mathematical contributions As an undergraduate, Whitworth became the founding editor in chief of the '' Messenger of Mathematics'', and he continued as its editor until 1880. He published works about the logarithmic spiral and about trilinear coordinates, but his most famous mathematical publication is the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
History Of The Theory Of Numbers
''History of the Theory of Numbers'' is a three-volume work by L. E. Dickson summarizing work in number theory up to about 1920. The style is unusual in that Dickson mostly just lists results by various authors, with little further discussion. The central topic of quadratic reciprocity and higher reciprocity laws is barely mentioned; this was apparently going to be the topic of a fourth volume that was never written . Volumes * Volume 1 - Divisibility and Primality - 486 pages * Volume 2 - Diophantine Analysis - 803 pages * Volume 3 - Quadratic In mathematics, the term quadratic describes something that pertains to squares, to the operation of squaring, to terms of the second degree, or equations or formulas that involve such terms. ''Quadratus'' is Latin for ''square''. Mathematics ... and Higher Forms - 313 pages References * * * * * * * * * * * * External links History of the Theory of Numbers - Volume 1at the Internet Archive. History of the Theory of Numbers - ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heronian Triangle
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths , , and and area are all integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation :16\,A^2=(a+b+c)(a+b-c)(b+c-a)(c+a-b); that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle. If the three side lengths are setwise coprime, the Heronian triangle is called ''primitive''. Triangles whose side lengths and areas are all rational numbers (positive rational solutions of the above equation) are sometimes also called ''Heronian triangles'' or rational triangles; in this article, these more general triangles will be called ''rational Heronian triangles''. Every (integral) Heronian triangle is a rational Heronian triangle. Co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). The area of a shape can be measured by comparing the shape to squares of a fixed size. In the International System of Units (SI), the standard unit of area is the square metre (written as m2), which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the same area as three such squares. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pythagorean Triple
A Pythagorean triple consists of three positive integers , , and , such that . Such a triple is commonly written , and a well-known example is . If is a Pythagorean triple, then so is for any positive integer . A primitive Pythagorean triple is one in which , and are coprime (that is, they have no common divisor larger than 1). For example, is a primitive Pythagorean triple whereas is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle. The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula a^2+b^2=c^2; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides a=b=1 and c=\sqrt2 is a right triangle, but (1,1,\sqrt2) is not a Pythagorean triple because \sqrt2 is not an integer. Moreover, 1 and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |