HOME





Enumeration Reducibility
In computability theory, enumeration reducibility (or e-reducibility for short) is a specific type of reducibility. Roughly speaking, ''A'' is enumeration-reducible to ''B'' if an enumeration of ''B'' can be algorithmically converted to an enumeration of ''A''. In particular, if ''B'' is computably enumerable, then ''A'' also is. Introduction In one of the possible formalizations of the concept, a Turing reduction from ''A'' to ''B'' is a Turing machine augmented with a special instruction "query the oracle". This instruction takes an integer ''x'' and instantly returns whether ''x'' belongs to ''B''. The oracle machine should compute ''A'', possibly using this special capability to decide ''B''. Informally, the existence of a Turing reduction from ''A'' to ''B'' means that if it is possible to decide ''B'', then this can be used to decide ''A''. Enumeration reducibility is a variant whose informal explanation is, instead, that if it is possible to enumerate ''B'', then this can b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definable set, definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function (mathematics), function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of computational complexity theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reduction (complexity)
In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first. Intuitively, problem ''A'' is reducible to problem ''B'', if an algorithm for solving problem ''B'' efficiently (if it exists) could also be used as a subroutine to solve problem ''A'' efficiently. When this is true, solving ''A'' cannot be harder than solving ''B''. "Harder" means having a higher estimate of the required computational resources in a given context (e.g., higher time complexity, greater memory requirement, expensive need for extra hardware processor cores for a parallel solution compared to a single-threaded solution, etc.). The existence of a reduction from ''A'' to ''B'' can be written in the shorthand notation ''A'' ≤m ''B'', usually with a subscript on the ≤ to indicate the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetical Hierarchy
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).P. G. Hinman, ''Recursion-Theoretic Hierarchies'' (p.89), Perspectives in Logic, 1978. Springer-Verlag Berlin Heidelberg, ISBN 3-540-07904-1. The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic. The Tarski–Kuratowski algorithm provides an easy way to get an upper bound on the classifications assigned to a formula and the set it defines. The hyperarithmetical hierarchy and the analytical hierarchy extend the arithmetical hierarchy to classify additional formulas and set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth-table Reduction
In computability theory a truth-table reduction is a type of reduction from a decision problem A to a decision problem B. To solve a problem in A, the reduction describes the answer to A as a boolean formula or truth table of some finite number of queries to B. Truth-table reductions are related to Turing reductions, and strictly weaker. (That is, not every Turing reduction between sets can be performed by a truth-table reduction, but every truth-table reduction can be performed by a Turing reduction.) A Turing reduction from a set ''B'' to a set ''A'' computes the membership of a single element in ''B'' by asking questions about the membership of various elements in ''A'' during the computation; it may adaptively determine which questions it asks based upon answers to previous questions. In contrast, a truth-table reduction or a weak truth-table reduction must present all of its (finitely many) oracle queries at the same time. In a truth-table reduction, the reduction also gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




General Recursive Function
In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function. Other equivalent classes of functions are the functions of lambda calculus and the functions tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene's Recursion Theorem
In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book ''Introduction to Metamathematics''. A related theorem, which constructs fixed points of a computable function, is known as Rogers's theorem and is due to Hartley Rogers, Jr. The recursion theorems can be applied to construct fixed points of certain operations on computable functions, to generate quines, and to construct functions defined via recursive definitions. Notation The statement of the theorems refers to an admissible numbering \varphi of the partial recursive functions, such that the function corresponding to index e is \varphi_e. If F and G are partial functions on the natural numbers, the notation F \simeq G indicates that, for each ''n'', either F(n) and G(n) are both defined and are equal, or else F(n) and G(n) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain of . If equals , that is, if is defined on every element in , then is said to be a total function. In other words, a partial function is a binary relation over two sets that associates to every element of the first set ''at most'' one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring ''every'' element of the first set to be associated to an element of the second set. A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oracle Machine
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used. Oracles An oracle machine can be conceived as a Turing machine connected to an oracle. The oracle, in this context, is an entity capable of solving some problem, which for example may be a decision problem or a function problem. The problem does not have to be computable; the oracle is not assumed to be a Turing machine or computer program. The oracle is simply a "black box" that is able to produce a solution for any instance of a given computational problem: * A decision problem is represented as a set ''A'' of natural numbers (or strings). An instance of the problem is an arbitrary natural number (or string). The solution to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert M
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' () "fame, glory, honour, praise, renown, godlike" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin.Reaney & Wilson, 1997. ''Dictionary of English Surnames''. Oxford University Press. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe, the name entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including En ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Selman's Theorem
In computability theory, Selman's theorem is a theorem relating enumeration reducibility with enumerability relative to oracles. It is named after Alan Selman, who proved it as part of his PhD thesis in 1971. Statement Informally, a set ''A'' is enumeration-reducible to a set ''B'' if there is a Turing machine which receives an enumeration of ''B'' (it has a special instruction to get the next element, or none if it has not yet been provided), and produces an enumeration of ''A''. See enumeration reducibility for a precise account. A set ''A'' is computably enumerable with oracle ''B'' (or simply "in ''B''") when there is a Turing machine with oracle ''B'' which enumerates the members of ''A''; this is the relativized version of computable enumerability. Selman's theorem: A set ''A'' is enumeration-reducible to a set ''B'' if and only if ''A'' is computably enumerable with an oracle ''X'' whenever ''B'' is computably enumerable with the same oracle ''X''. Discussion Informal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injective function, injection of each A_i into A, such that the image (mathematics), images of these injections form a Partition (set theory), partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their Union (set theory), union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]