HOME
*





Delay Line Interferometer
A delay line interferometer (DLI) can be a Mach–Zehnder interferometer or Michelson interferometer The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those ... based on two-beam interference, in which one beam is time-delayed to the other by a desired interval. Delay line interferometers are also known as optical DPSK demodulators. They convert a phase-keyed signal into an amplitude-keyed signal. In this application, an incoming differential phase-shift keying (DPSK) optical signal is first split into two equal-intensity beams in two arms of a Mach Zehnder or Michelson interferometer, in which one beam is delayed by an optical path difference corresponding to ''1-bit'' time delay. After recombination, the two beams interfere with each other constructively or destructively. The resultan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mach–Zehnder Interferometer
The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach (the son of Ernst Mach) and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons (particles of light) had been demonstrated as well in multiple experiments. The versatility of the Mach–Zehnder configuration has led to its being used in a wide range of fundamental research topics in quantum mechanics, including studies on counterfactual definiteness, quantum entanglement, quantum computation, quantum cryptography, quantum logic, Elitzur–Vaidman bomb tester, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michelson Interferometer
The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test. The Michelson interferometer (among other interferometer configurations) is employed in many scientific experiments and became well known for its use by Michelson and Edward Morley in the famous Michelson–Morley experiment (1887) in a configuration which would have detected the Earth's motion through the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interference (wave Propagation)
In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. Etymology The word ''interference'' is derived from the Latin words ''inter'' which means "between" and ''fere'' which means "hit or strike", and was coined by Thomas Young in 1801. Mechanisms The principle of superposition of waves states that when two or more propagating waves of the same type are incident on the same point, the resultant amplitude at that point is equal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical DPSK Demodulator
An optical DPSK demodulator is a device that provides a method for converting an optical differential phase-shift keying (DPSK) signal to an intensity-keyed signal at the receiving end in fiber-optic communication networks. It is also known as delay line interferometer (DLI), or simply called DPSK demodulator. The DPSK decoding method is achieved by comparing the phase of two sequential bits. An incoming DPSK optical signal is first split into two beams with equal intensities, in which one beam is delayed in space by an optical path difference that introduces a time delay corresponding to ''one bit''. The two beams in the two paths are then coherently recombined to interfere each other constructively or destructively. The interference intensity is measured and becomes the intensity-keyed signal. A typical optical system for such a purpose is Mach–Zehnder interferometer or Michelson interferometer, forming an optical DPSK demodulator. Delay time depends on the data rate. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Phase-shift Keying
Phase-shift keying (PSK) is a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency reference signal (the carrier wave). The modulation is accomplished by varying the sine and cosine inputs at a precise time. It is widely used for wireless LANs, RFID and Bluetooth communication. Any digital modulation scheme uses a finite number of distinct signals to represent digital data. PSK uses a finite number of phases, each assigned a unique pattern of binary digits. Usually, each phase encodes an equal number of bits. Each pattern of bits forms the symbol that is represented by the particular phase. The demodulator, which is designed specifically for the symbol-set used by the modulator, determines the phase of the received signal and maps it back to the symbol it represents, thus recovering the original data. This requires the receiver to be able to compare the phase of the received signal to a reference signal such a system is term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical Path Difference
In optics, optical path length (OPL, denoted ''Λ'' in equations), also known as optical length or optical distance, is the product of the geometric length of the optical path followed by light and the refractive index of homogeneous medium through which a light ray propagates; for inhomogeneous optical media, the product above is generalized as a path integral as part of the ray tracing procedure. A difference in OPL between two paths is often called the optical path difference (OPD). OPL and OPD are important because they determine the phase of the light and governs interference and diffraction of light as it propagates. Formulation In a medium of constant refractive index, ''n'', the OPL for a path of geometrical length ''s'' is just :\mathrm = n s .\, If the refractive index varies along the path, the OPL is given by a line integral :\mathrm = \int_C n \mathrm d s,\quad where ''n'' is the local refractive index as a function of distance along the path ''C''. An ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Response Time (technology)
In technology, response time is the time a system or functional unit takes to react to a given input. Computing Response time is the total amount of time it takes to respond to a request for service. That service can be anything from a memory fetch, to a disk IO, to a complex database query, or loading a full web page. Ignoring transmission time for a moment, the response time is the sum of the service time and wait time. The service time is the time it takes to do the work you requested. For a given request the service time varies little as the workload increases – to do X amount of work it always takes X amount of time. The wait time is how long the request had to wait in a queue before being serviced and it varies from zero, when no waiting is required, to a large multiple of the service time, as many requests are already in the queue and have to be serviced first. With basic queueing theory math you can calculate how the average wait time increases as the device providi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber Optics
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]