Definable Set
   HOME





Definable Set
In mathematical logic, a definable set is an ''n''-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation. Definition Let \mathcal be a first-order language, \mathcal an \mathcal-structure with domain M, X a fixed subset of M, and m a natural number. Then: * A set A\subseteq M^m is ''definable in \mathcal with parameters from X'' if and only if there exists a formula \varphi _1,\ldots,x_m,y_1,\ldots,y_n/math> and elements b_1,\ldots,b_n\in X such that for all a_1,\ldots,a_m\in M, :(a_1,\ldots,a_m)\in A if and only if \mathcal\models\varphi _1,\ldots,a_m,b_1,\ldots,b_n :The bracket notation here indicates the semantic evaluation of the free variables in the formula. * A set ''A is definable in \mathcal without parameters'' if it is definable in \mathcal with parameters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytical Hierarchy
Analytic or analytical may refer to: Chemistry * Analytical chemistry, the analysis of material samples to learn their chemical composition and structure * Analytical technique, a method that is used to determine the concentration of a chemical compound or chemical element * Analytical concentration Mathematics * Abstract analytic number theory, the application of ideas and techniques from analytic number theory to other mathematical fields * Analytic combinatorics, a branch of combinatorics that describes combinatorial classes using generating functions * Analytic element method, a numerical method used to solve partial differential equations * Analytic expression or analytic solution, a mathematical expression using well-known operations that lend themselves readily to calculation * Analytic geometry, the study of geometry based on numerical coordinates rather than axioms * Analytic number theory, a branch of number theory that uses methods from mathematical analysis M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Rudin
Walter Rudin (May 2, 1921 – May 20, 2010) was an Austrian- American mathematician and professor of mathematics at the University of Wisconsin–Madison. In addition to his contributions to complex and harmonic analysis, Rudin was known for his mathematical analysis textbooks: '' Principles of Mathematical Analysis'', ''Real and Complex Analysis'', and ''Functional Analysis.'' Rudin wrote ''Principles of Mathematical Analysis'' only two years after obtaining his Ph.D. from Duke University, while he was a C. L. E. Moore Instructor at MIT. ''Principles'', acclaimed for its elegance and clarity, has since become a standard textbook for introductory real analysis courses in the United States. Rudin's analysis textbooks have also been influential in mathematical education worldwide, having been translated into 13 languages, including Russian, Chinese, and Spanish. Biography Rudin was born into a Jewish family in Austria in 1921. He was enrolled for a period of time at a Swiss bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elementary Substructure
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


O-minimality
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) that is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊆ ''M'' (with parameters taken from ''M'') is a finite union of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every

Semi-algebraic Sets
In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Definition Let \mathbb be a real closed field (For example \mathbb could be the field of real numbers \mathbb). A subset S of \mathbb^n is a ''semialgebraic set'' if it is a finite union of sets defined by polynomial equalities of the form \ and of sets defined by polynomial inequalities of the form \. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seidenber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Sets
In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed under the operations of taking complements in X, finite unions, and finite intersections. Fields of sets should not be confused with fields in ring theory nor with fields in physics. Similarly the term "algebra over X" is used in the sense of a Boolean algebra and should not be confused with algebras over fields or rings in ring theory. Fields of sets play an essential role in the representation theory of Boolean algebras. Every Boolean algebra can be represented as a field of sets. Definitions A field of sets is a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X, called an algebra over X, that has the following properties: : X \setminus F \in \mathcal \text F \in \mathcal. as an element: \varnothing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that ..." can be viewed as a question "When is there an x such that ...?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it (modulo this theory). Examples An example from mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 Here the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an " axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extension By Definitions
In mathematical logic, more specifically in the proof theory of first-order theories, extensions by definitions formalize the introduction of new symbols by means of a definition. For example, it is common in naive set theory to introduce a symbol \emptyset for the set that has no member. In the formal setting of first-order theories, this can be done by adding to the theory a new constant \emptyset and the new axiom \forall x(x\notin\emptyset), meaning "for all ''x'', ''x'' is not a member of \emptyset". It can then be proved that doing so adds essentially nothing to the old theory, as should be expected from a definition. More precisely, the new theory is a conservative extension of the old one. Definition of relation symbols ''Let'' T be a first-order theory and \phi(x_1,\dots,x_n) a formula of T such that x_1, ..., x_n are distinct and include the variables free in \phi(x_1,\dots,x_n). Form a new first-order theory T' from T by adding a new n-ary relation symbol R, the logica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]