HOME



picture info

DBFS
Decibels relative to full scale (dBFS or dB FS) is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO). The level of 0dBFS is assigned to the maximum possible digital level. For example, a signal that reaches 50% of the maximum level has a level of −6dBFS, which is 6dB below full scale. Conventions differ for root mean square (RMS) measurements, but all peak measurements smaller than the maximum are negative levels. A digital signal that does not contain any samples at 0dBFS can still Clipping (audio), clip when converted to analog form due to the signal reconstruction process interpolating between samples. This can be prevented by careful digital-to-analog converter circuit design. Measurements of the true inter-sample peak levels are notated as dBTP or dB TP ("decibels true peak"). RMS levels Since a peak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Full Scale
In electronics and signal processing, full scale represents the maximum amplitude a system can represent. In digital systems, a signal is said to be at digital full scale when its magnitude has reached the maximum representable value. Once a signal has reached digital full scale, all headroom has been utilized, and any further increase in amplitude will result in an error known as clipping. The amplitude of a digital signal can be represented in percent; full scale; or decibels, full scale (dBFS). In analog systems, full scale may be defined by the maximum voltage available, or the maximum deflection (full scale deflection or FSD) or indication of an analog instrument such as a moving coil meter or galvanometer. Binary representation Since binary integer representation range is asymmetrical, full scale is defined using the maximum positive value that can be represented. For example, 16-bit PCM audio is centered on the value 0, and can contain values from −32,768 to +32, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clipping
Clipping may refer to: Words * Clipping (morphology), the formation of a new word by shortening it, e.g. "ad" from "advertisement" * Clipping (phonetics), shortening the articulation of a speech sound, usually a vowel * Clipping (publications), the cutting-out of articles from a paper publication Science and technology * Coin clipping, shaving off a small portion of precious metal for profit * Clipping (computer graphics), only drawing things that will be visible to the viewer * Noclip mode, or "Noclipping", when the player or another object in a video game unrealistically passes through another object * Clipping (gardening), pruning, removing unwanted portions from a plant ** Clippings, the portions that are removed in this process * Clipping (medicine), surgical treatment used to treat an aneurysm * Clipping (signal processing), a form of distortion that limits a signal once it exceeds a threshold. Some forms include: ** Clipping (audio), the clipping of the top and bott ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Range
Dynamics (from Greek δυναμικός ''dynamikos'' "powerful", from δύναμις ''dynamis'' " power") or dynamic may refer to: Physics and engineering * Dynamics (mechanics), the study of forces and their effect on motion Brands and enterprises * Dynamic (record label), an Italian record label in Genoa Mathematics * Dynamical system, a concept describing a point's time dependency ** Topological dynamics, the study of dynamical systems from the viewpoint of general topology * Symbolic dynamics, a method to model dynamical systems Social science * Group dynamics, the study of social group processes especially * Population dynamics, in life sciences, the changes in the composition of a population * Psychodynamics, the study of psychological forces driving human behavior * Social dynamics, the ability of a society to react to changes * Spiral Dynamics, a social development theory Other uses * Dynamics (music), the softness or loudness of a sound or note * DTA Dynami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Audio
Digital audio is a representation of sound recorded in, or converted into, digital signal (signal processing), digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical sampling (signal processing), samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 Hertz, times per second, each with 16-bit audio bit depth, resolution. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced comparison of analog and digital recording, analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s. In a digital audio system, an analog signal, analog electrical signal representing the sound is converted with an analog-to-digital converter (ADC) into a digital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Rate
In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second. In most computing and digital communication environments, one byte per second (symbol: B/s) corresponds roughly to 8 bit/s. However if stop bits, start bits, and parity bits need to be factored in, a higher number of bits per second will be required to achieve a throughput of the same number of bytes. Prefixes When quantifying large or small bit rates, SI ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Audio Bit Depth
In digital audio using pulse-code modulation (PCM), bit depth is the number of bits of information in each sample, and it directly corresponds to the resolution of each sample. Examples of bit depth include Compact Disc Digital Audio, which uses 16 bits per sample, and DVD-Audio and Blu-ray Disc, which can support up to 24 bits per sample. In basic implementations, variations in bit depth primarily affect the noise level from quantization error—thus the signal-to-noise ratio (SNR) and dynamic range. However, techniques such as dithering, noise shaping, and oversampling can mitigate these effects without changing the bit depth. Bit depth also affects bit rate and file size. Bit depth is useful for describing PCM digital signals. Non-PCM formats, such as those using lossy compression, do not have associated bit depths. Binary representation A PCM signal is a sequence of digital audio samples containing the data providing the necessary information to reconst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alignment Level
The alignment level in an audio signal chain or on an audio recording is a defined anchor point that represents a reasonable or typical level. Analogue In analogue systems, alignment level in broadcast chains is commonly 0  dBu (0.775 volts RMS) and in professional audio is commonly ''0 VU'' (4 dBu, 1.228 volts RMS). Under normal situations, the 0 VU reference allows for a headroom of 18 dB or more above the reference level without significant distortion. This is largely due to the use of slow-responding VU meters in almost all analogue professional audio equipment, which, by their design and by specification, respond to an average level, not peak levels. Digital In digital systems alignment level commonly is at −18  dBFS (18 dB below digital full scale), in accordance with EBU recommendations. Digital equipment must use peak-reading metering systems to avoid severe digital distortion caused by the signal going beyond digita ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures, which is abbreviated BIPM from . The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as products of powers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantization Error
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms. The difference between an input value and its quantized value (such as round-off error) is referred to as quantization error, noise or distortion. A device or algorithmic function that performs quantization is called a quantizer. An analog-to-digital converter is an example of a quantizer. Example For example, rounding a real number x to the nearest integer value forms a very basic type of quantizer – a ''uniform'' one. A typi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dither
Dither is an intentionally applied form of noise used to randomize quantization error, preventing large-scale patterns such as color banding in images. Dither is routinely used in processing of both digital audio and video data, and is often one of the last stages of mastering audio to a CD. A common use of dither is converting a grayscale image to black and white, so that the density of black dots in the new image approximates the average gray level in the original. Etymology The term ''dither'' was published in books on analog computation and hydraulically controlled guns shortly after World War II. Though he did not use the term ''dither'', the concept of dithering to reduce quantization patterns was first applied by Lawrence G. Roberts in his 1961 MIT master's thesis and 1962 article. By 1964 dither was being used in the modern sense described in this article. The technique was in use at least as early as 1915, though not under the name ''dither''. In digital pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Significant Bit
In computing, bit numbering is the convention used to identify the bit positions in a binary number. Bit significance and indexing In computing, the least significant bit (LSb) is the bit position in a binary integer representing the lowest-order place of the integer. Similarly, the most significant bit (MSb) represents the highest-order place of the binary integer. The LSb is sometimes referred to as the ''low-order bit''. Due to the convention in positional notation of writing less significant digits further to the right, the LSb also might be referred to as the ''right-most bit''. The MSb is similarly referred to as the ''high-order bit'' or ''left-most bit''. In both cases, the LSb and MSb correlate directly to the least significant digit and most significant digit of a decimal integer. Bit indexing correlates to the positional notation of the value in base 2. For this reason, bit index is not affected by how the value is stored on the device, such as the value's byte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]