Closed-form Expression
   HOME





Closed-form Expression
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are ''n''th root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions. The ''closed-form problem'' arises when new ways are introduced for specifying mathematical objects, such as limits, series, and integrals: given an object specified with such tools, a natural problem is to find, if possible, a ''closed-form expression'' of this object; that is, an expression of this object in terms of previous ways of specifying it. Example: roots of polynomials The quadratic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Function
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or ''x''1/''n''). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. Many textbooks and dictionaries do not give a precise definition of the elementary functions, and mathematicians differ on it. Examples Basic examples Elementary functions of a single variable include: * Constant functions: 2,\ \pi,\ e, etc. * Rational powers of : x,\ x^2,\ \sqrt\ (x^\frac),\ x^\frac, etc. * Exponential functions: e^x, \ a^x * Logarithm In mathematics, the logarithm o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galois Theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying root of a function, roots of polynomials. This allowed him to characterize the polynomial equations that are solvable by radicals in terms of properties of the permutation group of their roots—an equation is by definition ''solvable by radicals'' if its roots may be expressed by a formula involving only integers, nth root, th roots, and the four basic arithmetic operations. This widely generalizes the Abel–Ruffini theorem, which asserts that a general polynomial of degree at least five cannot be solved by radicals. Galois theory has been used to solve classic problems including showing that two problems of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abel–Ruffini Theorem
In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799 (which was refined and completed in 1813 and accepted by Cauchy) and Niels Henrik Abel, who provided a proof in 1824. ''Abel–Ruffini theorem'' refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not the zero polynomial. This improved statement follows directly from . Galois theory implies also that :x^5-x-1=0 is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quartic Equation
In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case. History Lodovico Ferrari is attributed with the discovery of the solution to the quartic in 1540, but since this solution, like all algebraic solutions of the quartic, requires the solution of a cubic to be found, it could not be published immediately. The solution of the quartic was published together with that of the cubic by Ferrari's mentor Gerolamo Cardano in the book '' Ars Magna'' (1545). The proof that this was the highest order general polynomial for which such solutions could be found was first given in the Abel–Ruffini theorem in 1824, proving that all attempts at solving the higher order polynomials would be futile. The notes left by Évariste Galois before ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Equation
In algebra, a cubic equation in one variable is an equation of the form ax^3+bx^2+cx+d=0 in which is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients , , , and of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: * algebraically: more precisely, they can be expressed by a ''cubic formula'' involving the four coefficients, the four basic arithmetic operations, square roots, and cube roots. (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not for higher-degree equations, by the Abel–Ruffini theorem.) * trigonometrically * numerical approximations of the roots can be found using root-finding algorithms such as Newton's method. The coefficients do not need to be real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field Theory (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solution In Radicals
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of th roots ( square roots, cube roots, etc.). A well-known example is the quadratic formula :x=\frac, which expresses the solutions of the quadratic equation :ax^2 + bx + c =0. There exist algebraic solutions for cubic equations and quartic equations, which are more complicated than the quadratic formula. The Abel–Ruffini theorem,Jacobson, Nathan (2009), Basic Algebra 1 (2nd ed.), Dover, and, more generally Galois theory, state that some quintic equations, such as :x^5-x+1=0, do not have any algebraic solution. The same is true for every higher degree. However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation x^ = 2 can be solved as x=\pm\sqrt 0. The eight other solutions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For example, x^5-3x+1=0 is an algebraic equation with integer coefficients and :y^4 + \frac - \frac + xy^2 + y^2 + \frac = 0 is a multivariate polynomial equation over the rationals. For many authors, the term ''algebraic equation'' refers only to the univariate case, that is polynomial equations that involve only one variable (mathematics), variable. On the other hand, a polynomial equation may involve several variables (the ''multivariate'' case), in which case the term ''polynomial equation'' is usually preferred. Some but not all polynomial equations with Rational number, rational coefficients have a solution that is an algebraic expression that can be found using a finite number of operations that involve only those same types of coefficients (that is, can be Al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Equation
In mathematics, a quadratic equation () is an equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where the variable (mathematics), variable represents an unknown number, and , , and represent known numbers, where . (If and then the equation is linear equation, linear, not quadratic.) The numbers , , and are the ''coefficients'' of the equation and may be distinguished by respectively calling them, the ''quadratic coefficient'', the ''linear coefficient'' and the ''constant coefficient'' or ''free term''. The values of that satisfy the equation are called ''solution (mathematics), solutions'' of the equation, and ''zero of a function, roots'' or ''zero of a function, zeros'' of the quadratic function on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Formula
In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions. Given a general quadratic equation of the form , with representing an unknown, and coefficients , , and representing known real number, real or complex number, complex numbers with , the values of satisfying the equation, called the Zero of a function, ''roots'' or ''zeros'', can be found using the quadratic formula, x = \frac, where the plus–minus sign, plus–minus symbol "" indicates that the equation has two roots. Written separately, these are: x_1 = \frac, \qquad x_2 = \frac. The quantity is known as the discriminant of the quadratic equation. If the coefficients , , and are real numbers then when , the equation has two distinct real number, real roots; when , the equation has one repeated root, repeated real root; and when , the equation h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. the other being Derivative, differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter. A definite integral computes the signed area of the region in the plane that is bounded by the Graph of a function, graph of a given Function (mathematics), function between two points in the real line. Conventionally, areas above the horizontal Coordinate axis, axis of the plane are positive while areas below are n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]