HOME
*



picture info

Chlorosome
A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and some green filamentous anoxygenic phototrophs (FAP) ( Chloroflexaceae, Oscillochloridaceae; both members of Chloroflexia). They differ from other antenna complexes by their large size and lack of protein matrix supporting the photosynthetic pigments. Green sulfur bacteria are a group of organisms that generally live in extremely low-light environments, such as at depths of 100 metres in the Black Sea. The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day. To achieve this, the bacteria contain chlorosome structures, which contain up to 250,000 chlorophyll molecules. Chlorosomes are ellipsoidal bodies, in GSB their length varies from 100 to 200 nm, width of 50-100 nm and height of 15 – 30 nm, in FAP the chlorosomes are somewhat smaller. Structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chlorosome
A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and some green filamentous anoxygenic phototrophs (FAP) ( Chloroflexaceae, Oscillochloridaceae; both members of Chloroflexia). They differ from other antenna complexes by their large size and lack of protein matrix supporting the photosynthetic pigments. Green sulfur bacteria are a group of organisms that generally live in extremely low-light environments, such as at depths of 100 metres in the Black Sea. The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day. To achieve this, the bacteria contain chlorosome structures, which contain up to 250,000 chlorophyll molecules. Chlorosomes are ellipsoidal bodies, in GSB their length varies from 100 to 200 nm, width of 50-100 nm and height of 15 – 30 nm, in FAP the chlorosomes are somewhat smaller. Structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Green Sulfur Bacteria
The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthesis. They live in anaerobic aquatic environments. In contrast to plants, green sulfur bacteria mainly use sulfide ions as electron donors. They are autotrophs that utilize the reverse tricarboxylic acid cycle to perform carbon fixation. They are also mixotrophs and reduce nitrogen. Characteristics Green sulfur bacteria are gram-negative rod or spherical shaped bacteria. Some types of green sulfur bacteria have gas vacuoles that allow for movement. They are photolithoautotrophs, and use light energy and reduced sulfur compounds as the electron source. Electron donors include H2, H2S, S. The major photosynthetic pigment in these bacteria is Bacteriochlorophylls ''c'' or ''d'' in green species and ''e'' in brown species, and is located i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green Sulfur Bacteria
The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthesis. They live in anaerobic aquatic environments. In contrast to plants, green sulfur bacteria mainly use sulfide ions as electron donors. They are autotrophs that utilize the reverse tricarboxylic acid cycle to perform carbon fixation. They are also mixotrophs and reduce nitrogen. Characteristics Green sulfur bacteria are gram-negative rod or spherical shaped bacteria. Some types of green sulfur bacteria have gas vacuoles that allow for movement. They are photolithoautotrophs, and use light energy and reduced sulfur compounds as the electron source. Electron donors include H2, H2S, S. The major photosynthetic pigment in these bacteria is Bacteriochlorophylls ''c'' or ''d'' in green species and ''e'' in brown species, and is located i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Light-harvesting Complex
A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. The light which is captured by the chromophores is capable of exciting molecules from their ground state to a higher energy state, known as the excited state. This excited state does not last very long and is known to be short-lived. Light-harvesting complexes are found in a wide variety among the different photosynthetic species, with no homology among the major groups. The complexes consist of proteins and photosynthetic pigments and surround a photosynthetic reaction center to focus energy, attained from photons absorbed by the pigment, toward the reaction center using Förster resonance energy transfer. Function Photosynthesis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chloroflexia
The Chloroflexia are a class of bacteria in the phylum Chloroflexota, known as filamentous green non-sulfur bacteria. They use light for energy and are named for their green pigment, usually found in photosynthetic bodies called chlorosomes. Chloroflexia are typically filamentous, and can move about through bacterial gliding. They are facultatively aerobic, but do not produce oxygen in the process of producing energy from light, or phototrophy. Additionally, Chloroflexia have a different method of phototrophy ( photoheterotrophy) than true photosynthetic bacteria. Etymology The name "Chloroflexi" is a Neolatin plural of "Chloroflexus", which is the name of the first genus described. The noun is a combination of the Greek ''chloros'' (χλωρός) meaning "greenish-yellow" and the Latin ''flexus'' (of ''flecto'') meaning "bent" to mean "a green bending". The name is not due to chlorine, an element confirmed as such in 1810 by Sir Humphry Davy and named after its pale green c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bacteriochlorophyll
Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but do not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of with protons gives bacteriophaeophytin (BPh), the phaeophytin form. BacterioChlorophyll a.svg, bacteriochlorophyll ''a'' BacterioChlorophyll b.svg, bacteriochlorophyll ''b'' BacterioChlorophyll c.svg, bacteriochlorophyll ''c'' BacterioChlorophyll d.svg, bacteriochlorophyll ''d'' BacterioChlorophyll e.svg, bacteriochlorophyll ''e'' Bacteriochlorophyll f.svg, bacteriochlorophyll ''f'' BacterioChlorophyll g.svg, bacteriochlorophyll ''g'' Structure Bacteriochlorophylls ''a'', ''b'', and ''g'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bacteriochlorophyll
Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but do not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of with protons gives bacteriophaeophytin (BPh), the phaeophytin form. BacterioChlorophyll a.svg, bacteriochlorophyll ''a'' BacterioChlorophyll b.svg, bacteriochlorophyll ''b'' BacterioChlorophyll c.svg, bacteriochlorophyll ''c'' BacterioChlorophyll d.svg, bacteriochlorophyll ''d'' BacterioChlorophyll e.svg, bacteriochlorophyll ''e'' Bacteriochlorophyll f.svg, bacteriochlorophyll ''f'' BacterioChlorophyll g.svg, bacteriochlorophyll ''g'' Structure Bacteriochlorophylls ''a'', ''b'', and ''g'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-ray Crystallography
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the mean positions of the atoms in the crystal can be determined, as well as their chemical bonds, their crystallographic disorder, and various other information. Since many materials can form crystals—such as salts, metals, minerals, semiconductors, as well as various inorganic, organic, and biological molecules—X-ray crystallography has been fundamental in the development of many scientific fields. In its first decades of use, this method determined the size of atoms, the lengths and types of chemical bonds, and the atomic-scale differences among variou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Farnesol
Farnesol is a natural 15-carbon organic compound which is an acyclic sesquiterpene alcohol. Under standard conditions, it is a colorless liquid. It is hydrophobic, and thus insoluble in water, but miscible with oils. Farnesol is produced from 5-carbon isoprene compounds in both plants and animals. Phosphate-activated derivatives of farnesol are the building blocks of possibly all acyclic sesquiterpenoids. These compounds are doubled to form 30-carbon squalene, which is the precursor for steroids in plants, animals, and fungi. Farnesol and its derivatives are important starting compounds for natural and artificial organic synthesis. Uses Farnesol is present in many essential oils such as citronella, neroli, cyclamen, lemon grass, tuberose, rose, musk, balsam, and tolu. It is used in perfumery to emphasize the odors of sweet, floral perfumes. It enhances perfume scent by acting as a co-solvent that regulates the volatility of the odorants. It is especially used in lilac p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lipid Multilayer
Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology. Lipids may be broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles, multilamellar/unilamellar liposomes, or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or "building-blocks": ketoacyl and isoprene groups. Using this approach, lipids may be divided into eight categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides (derived from condens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid-state Nuclear Magnetic Resonance
Solid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions. As a result, solid-state NMR spectra are characterised by larger linewidths than in solution state NMR, which can be utilized to give quantitative information on the molecular structure, conformation and dynamics of the material. Solid-state NMR is often combined with magic angle spinning to remove anisotropic interactions and improve the resolution as well as the sensitivity of the technique. Nuclear spin interactions The resonance frequency of a nuclear spin depends on the strength of the magnetic field at the nucleus, which can be modified by isotropic (e.g. chemical shift, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mutant
In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It is a characteristic that would not be observed naturally in a specimen. The term mutant is also applied to a virus with an alteration in its nucleotide sequence whose genome is in the nuclear genome. The natural occurrence of genetic mutations is integral to the process of evolution. The study of mutants is an integral part of biology; by understanding the effect that a mutation in a gene has, it is possible to establish the normal function of that gene. Mutants arise by mutation Mutants arise by mutations occurring in pre-existing genomes as a result of errors of DNA replication or errors of DNA repair. Errors of replication often involve translesion synthesis by a DNA polymerase when it encounters and bypasses a damaged base in the t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]