Cotangent Vector
In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T^*_x\!\mathcal M is defined as the dual space of the tangent space at ''x'', T_x\mathcal M, although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. Properties All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold. All the cotangent spaces of a manifold can be "glued together" (i.e. unioned and endowed with a topology) to form a new differentiable manifold of twice the dimension, the cotangent bundle of the manifold. The tangent space and the cotangent space at a point are both real vector spaces of the same dimension and therefore isomorphic to each other via many possible isomorphisms ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal (ring Theory)
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-form
In differential geometry, a one-form (or covector field) on a differentiable manifold is a differential form of degree one, that is, a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction to each fibre is a linear functional on the tangent space. Let \omega be a one-form. Then \begin \omega: U & \rightarrow \bigcup_ T^*_p(\R^n) \\ p & \mapsto \omega_p \in T_p^*(\R^n) \end Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: \alpha_x = f_1(x) \, dx_1 + f_2(x) \, dx_2 + \cdots + f_n(x) \, dx_n , where the f_i are smooth functions. From this perspective, a one-form has a covariant transformation law on passing from one coordinate system to another. Thus a one-form is an order 1 covariant tensor field. Examples The most basic non-trivi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multilinear Map
Multilinear may refer to: * Multilinear form, a type of mathematical function from a vector space to the underlying field * Multilinear map, a type of mathematical function between vector spaces * Multilinear algebra, a field of mathematics {{mathdab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a -form, and can be integrated over an interval ,b/math> contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. In general, a -form is an object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Power
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector v in V. The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol \wedge and the fact that the product of two elements of V is "outside" V. The wedge product of k vectors v_1 \wedge v_2 \wedge \dots \wedge v_k is called a ''blade of degree k'' or ''k-blade''. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: the magnitude of a -blade v\wedge w is the area of the parallelogram defined by v and w, and, more generally, the magnitude of a k-blade is the (hyper)volume of the parallelotope defined by the constituent vectors. The alternating property that v\wedge v=0 implies a skew-s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pushforward (differential)
In differential geometry, pushforward is a linear approximation of smooth maps (formulating manifold) on tangent spaces. Suppose that \varphi\colon M\to N is a smooth map between smooth manifolds; then the differential of \varphi at a point x, denoted \mathrm d\varphi_x, is, in some sense, the best linear approximation of \varphi near x. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of M at x to the tangent space of N at \varphi(x), \mathrm d\varphi_x\colon T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on M ''forward'' to tangent vectors on N. The differential of a map \varphi is also called, by various authors, the derivative or total derivative of \varphi. Motivation Let \varphi: U \to V be a Smooth function#Smooth functions on and between manifolds, smooth map from an Open subset#Euclidean space, open subset U of \R^m to an open subset V of \R^n. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pullback (differential Geometry)
Let \phi:M\to N be a smooth map between smooth manifolds M and N. Then there is an associated linear map from the space of 1-forms on N (the linear space of sections of the cotangent bundle) to the space of 1-forms on M. This linear map is known as the pullback (by \phi), and is frequently denoted by \phi^*. More generally, any covariant tensor field – in particular any differential form – on N may be pulled back to M using \phi. When the map \phi is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from N to M or vice versa. In particular, if \phi is a diffeomorphism between open subsets of \R^n and \R^n, viewed as a change of coordinates (perhaps between different charts on a manifold M), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject. The idea behind the pullba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Derivative
In differential geometry, the Lie derivative ( ), named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector fields and one-forms), along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold. Functions, tensor fields and forms can be differentiated with respect to a vector field. If ''T'' is a tensor field and ''X'' is a vector field, then the Lie derivative of ''T'' with respect to ''X'' is denoted \mathcal_X T. The differential operator T \mapsto \mathcal_X T is a derivation of the algebra of tensor fields of the underlying manifold. The Lie derivative commutes with contraction and the exterior derivative on differential forms. Although there are many concepts of taking a derivative in differential geometry, they all agree when the expression being differentiated is a function or scalar field. Thus in t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry Of Curves
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus. One of the most important tools used to analyze a curve is the Frenet frame, a moving frame that provides a coordinate system at each point of the curve that is "best adapted" to the curve near that point. The theory of curves is much simpler and narrower in scope than the theory of surfaces and its higher-dimensional generalizations because a regular curve in a Euclidean space has no intrinsic geometry. Any regular curve may be parametrized by th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smooth Function
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; that is, a function of class C^k is a function that has a th derivative that is continuous in its domain. A function of class C^\infty or C^\infty-function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that all these derivatives are continuous). Generally, the term smooth function refers to a C^-function. However, it may also mean "sufficiently differentiable" for the problem under consideration. Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Ringed Space
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid. Ringed spaces appear in analysis as well as complex algebraic geometry and the scheme theory of algebraic geometry. Note: In the definition of a ringed space, most expositions tend to restrict the rings to be commutative rings, including Hartshorne and Wikipedia. ''Éléments de géométrie algébrique'', on the other hand, does not impose the commutativity assumption, although the book mostly co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |