Color Appearance
   HOME



picture info

Color Appearance
A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source. (In contrast, a color model defines a coordinate space to describe colors, such as the RGB and CMYK color models.) A uniform color space (UCS) is a color model that seeks to make the color-making attributes perceptually uniform, i.e. identical spatial distance between two colors equals identical amount of perceived color difference. A CAM under a fixed viewing condition results in a UCS; a UCS with a modeling of variable viewing conditions results in a CAM. A UCS without such modelling can still be used as a rudimentary CAM. Background Color appearance Color originates in the mind of the observer; “objectively”, there is only the spectral power distribution of the light that meets the eye. In this sense, ''any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perception
Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system.Goldstein (2009) pp. 5–7 Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves. Perception is not only the passive receipt of these signals, but it is also shaped by the recipient's learning, memory, expectation, and attention. Gregory, Richard. "Perception" in Gregory, Zangwill (1987) pp. 598–601. Sensory input is a process that transforms this low-level information to higher-level information (e.g., extracts shapes for object recognition). The following process connects a person's concepts and expectations (or knowledge) with restorative and selective mechanisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Color Temperature
Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source. The color temperature scale describes only the ''color'' of light emitted by a light source, which may actually be at a different (and often much lower) temperature. Color temperature has applications in lighting, photography, videography, publishing, manufacturing, astrophysics, and other fields. In practice, color temperature is most meaningful for light sources that correspond somewhat closely to the color of some black body, i.e., light in a range going from red to orange to yellow to white to bluish white. Although the concept of correlated color temperature extends the definition to any visible light, the color temperature of a green or a purple light rar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Color Management
Color management is the process of ensuring consistent and accurate colors across various devices, such as monitors, printers, and cameras. It involves the use of color profiles, which are standardized descriptions of how colors should be displayed or reproduced. Color management is necessary because different devices have different color capabilities and characteristics. For example, a monitor may display colors differently than a printer can reproduce them. Without color management, the same image may appear differently on different devices, leading to inconsistencies and inaccuracies. To achieve color management, a color profile is created for each device involved in the color workflow. This profile describes the device's color capabilities and characteristics, such as its color gamut (range of colors it can display or reproduce) and color temperature. These profiles are then used to translate colors between devices, ensuring consistent and accurate color reproduction. Col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CIELAB Color Space
The CIELAB color space, also referred to as ''L*a*b*'', is a color space defined by the International Commission on Illumination (abbreviated CIE) in 1976. It expresses color as three values: ''L*'' for perceptual lightness and ''a*'' and ''b*'' for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color. Like the CIEXYZ space it derives from, CIELAB color space is a device-independent, "standard observer" model. The colors it defines are not relative to any particular device such as a computer monitor or a printer, but instead relate to the CIE standard observer which is an averaging of the results of color matching experiments under laboratory conditions. Coordinates The CIELAB space is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LMS Color Space
LMS (long, medium, short), is a color space which represents the response of the three types of Cone cell, cones of the human eye, named for their responsivity (sensitivity) peaks at long, medium, and short wavelengths. The numerical range is generally not specified, except that the lower end is generally bounded by zero. It is common to use the LMS color space when performing chromatic adaptation (estimating the appearance of a sample under a different illuminant). It is also useful in the study of color blindness, when one or more cone types are defective. Definition The cone response functions \bar(\lambda), \bar(\lambda),\bar(\lambda) are the color matching functions (CMFs) for the LMS color space. The chromaticity coordinates (L, M, S) for a spectral distribution J(\lambda) are defined as: : L = \int^\infty_0 J(\lambda)\bar(\lambda)d\lambda : M = \int^\infty_0 J(\lambda)\bar(\lambda)d\lambda : S = \int^\infty_0 J(\lambda)\bar(\lambda)d\lambda The cone response function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Illusion
In visual perception, an optical illusion (also called a visual illusion) is an illusion caused by the visual system and characterized by a visual perception, percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immersed in water; an example for a physiological paradox is the motion aftereffect (where, despite movement, position remains unchanged). An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo illusion, Ponzo, Poggendorff illusion, Poggendorff, and M� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helmholtz–Kohlrausch Effect
The Helmholtz–Kohlrausch effect (named after Hermann von Helmholtz and V. A. Kohlrausch) is a perceptual phenomenon wherein the intense saturation of spectral hue is perceived as part of the color's luminance. This brightness increase by saturation, which grows stronger as saturation increases, might better be called chromatic luminance, since "white" or achromatic luminance is the standard of comparison. It appears in both self-luminous and surface colors, although it is most pronounced in spectral (monochromatic) colors. Lightness Even when they have the same luminance, colored lights seem brighter to human observers than white light does. The way humans perceive the brightness of the lights is different for everyone. When the colors are more saturated, our eyes interpret it as the color's luminance and chroma. This makes us believe that the colors are actually brighter. An exception to this is when the human observer is red-green colorblind, they cannot distinguish the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hunt Effect (color)
The Hunt effect or Luminance-on-colorfulness effect comprises an increase in colorfulness of a color with increasing luminance. The effect was first described by RWG Hunt in 1952. Hunt noted that this effect occurs at low luminance levels. At higher luminance, he noted a hue shift of colors to be more blue with higher luminance, which is now known as the Bezold–Brücke effect. The Hunt effect is related to the Helmholtz–Kohlrausch effect, where a saturated stimulus is seen to be brighter than less saturated or achromatic stimuli. See also * Opponent process The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are thre ... * Purkinje shift * Abney effect References Color appearance phenomena {{color-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contrast (vision)
Contrast is the difference in luminance or color that makes an object (or its representation in an image or display) visible against a background of different luminance or color. The human visual system is more sensitive to contrast than to absolute luminance; thus, we can perceive the world similarly despite significant changes in illumination throughout the day or across different locations. The maximum contrast of an image is termed the contrast ratio or dynamic range. In images where the contrast ratio approaches the maximum possible for the medium, there is a ''conservation of contrast''. In such cases, increasing contrast in certain parts of the image will necessarily result in a decrease in contrast elsewhere. Brightening an image increases contrast in darker areas but decreases it in brighter areas; conversely, darkening the image will have the opposite effect. Bleach bypass reduces contrast in the darkest and brightest parts of an image while enhancing luminance contr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bartleson-Breneman Effect
A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source. (In contrast, a color model defines a coordinate space to describe colors, such as the RGB and CMYK color models.) A uniform color space (UCS) is a color model that seeks to make the color-making attributes perceptually uniform, i.e. identical spatial distance between two colors equals identical amount of perceived color difference. A CAM under a fixed viewing condition results in a UCS; a UCS with a modeling of variable viewing conditions results in a CAM. A UCS without such modelling can still be used as a rudimentary CAM. Background Color appearance Color originates in the mind of the observer; “objectively”, there is only the spectral power distribution of the light that meets the eye. In this sense, ''any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abney Effect
The Abney effect or the purity-on-hue effect is the perception, perceived hue shift that occurs when white light is additive color, added to a spectral color, monochromatic light source. The addition of white light will cause a desaturation of the monochromatic source, as perceived by the human observer. However, a less intuitive effect of the perceived Electromagnetic spectrum#Visible radiation .28light.29, white light addition is the change in the apparent hue. This hue shift is physiological rather than physical in nature. This variance of hue as a result of the addition of white light was first described by the English chemist and physicist Sir William de Wiveleslie Abney in 1909, although the date is commonly reported as 1910. A white light source can be created by the combination of red, blue, and green light. Abney demonstrated that the cause of the apparent change in hue was the red and green light that comprised this light source, and that the blue light component had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]