HOME



picture info

Central Binomial Coefficient
In mathematics the ''n''th central binomial coefficient is the particular binomial coefficient : = \frac \textn \geq 0. They are called central since they show up exactly in the middle of the even-numbered rows in Pascal's triangle. The first few central binomial coefficients starting at ''n'' = 0 are: :, , , , , , 924, 3432, 12870, 48620, ...; Combinatorial interpretations and other properties The central binomial coefficient \binom is the number of arrangements where there are an equal number of two types of objects. For example, when n=2, the binomial coefficient \binom is equal to 6, and there are six arrangements of two copies of ''A'' and two copies of ''B'': ''AABB'', ''ABAB'', ''ABBA'', ''BAAB'', ''BABA'', ''BBAA''. The same central binomial coefficient \binom is also the number of words of length 2''n'' made up of ''A'' and ''B'' within which, as one reads from left to right, there are never more ''B'' than ''A'' at any point. For example, when n=2, there are six ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pascal Triangle Small
Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, French mathematician, physicist, inventor, philosopher, writer and theologian Places * Pascal (crater), a lunar crater * Pascal Island (Antarctica) * Pascal Island (Western Australia) Science and technology * Pascal (unit), the SI unit of pressure * Pascal (programming language), a programming language developed by Niklaus Wirth ** Microsoft Pascal **Turbo Pascal * PASCAL (database), a bibliographic database maintained by the Institute of Scientific and Technical Information * Pascal (microarchitecture), codename for a microarchitecture developed by Nvidia Other uses * (1895–1911) * (1931–1942) * Pascal and Maximus, fictional characters in ''Tangled'' * Pascal blanc, a French white wine grape * Pascal College, secondary education scho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Numbers
The Catalan numbers are a sequence of natural numbers that occur in various Enumeration, counting problems, often involving recursion, recursively defined objects. They are named after Eugène Charles Catalan, Eugène Catalan, though they were previously discovered in the 1730s by Minggatu. The -th Catalan number can be expressed directly in terms of the central binomial coefficients by :C_n = \frac = \frac \qquad\textn\ge 0. The first Catalan numbers for are : . Properties An alternative expression for is :C_n = - for n\ge 0\,, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a #Second proof, proof of the correctness of the formula. Another alternative expression is :C_n = \frac \,, which can be directly interpreted in terms of the cycle lemma; see below. The Catalan numbers satisfy the recurr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Of Bertrand's Postulate
In mathematics, Bertrand's postulate (now a theorem) states that, for each n \ge 2, there is a prime p such that n. First d in 1845 by Joseph Bertrand, it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan. The following was published by

picture info

Squarefree Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wolstenholme's Theorem
In mathematics, Wolstenholme's theorem states that for a prime number ''p'' ≥ 5, the congruence : \equiv 1 \pmod holds, where the parentheses denote a binomial coefficient. For example, with ''p'' = 7, this says that 1716 is one more than a multiple of 343. The theorem was first proved by Joseph Wolstenholme in 1862. In 1819, Charles Babbage showed the same congruence modulo ''p''2, which holds for ''p'' ≥ 3. An equivalent formulation is the congruence : \equiv \pmod for ''p'' ≥ 5, which is due to Wilhelm Ljunggren (and, in the special case ''b'' = 1, to J. W. L. Glaisher) and is inspired by Lucas's theorem. No known composite numbers satisfy Wolstenholme's theorem and it is conjectured that there are none (see below). A prime that satisfies the congruence modulo ''p''4 is called a Wolstenholme prime (see below). As Wolstenholme himself established, his theorem can also be expressed as a pair of congruences for (generalized) harmonic numbers: :1+++\dots+ \equiv 0 \pmod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Path
In combinatorics, a lattice path in the -dimensional integer lattice of length with steps in the Set (mathematics), set , is a sequence of Vector (mathematics and physics), vectors such that each consecutive difference v_i - v_ lies in . A lattice path may lie in any Lattice (group), lattice in , but the integer lattice is most commonly used. An example of a lattice path in of length 5 with steps in S = \lbrace (2,0), (1,1), (0,-1) \rbrace is L = \lbrace (-1,-2), (0,-1), (2,-1), (2,-2), (2,-3), (4,-3) \rbrace . North-East lattice paths A North-East (NE) lattice path is a lattice path in \mathbb^2 with steps in S = \lbrace (0,1), (1,0) \rbrace . The (0,1) steps are called North steps and denoted by N s; the (1,0) steps are called East steps and denoted by E s. NE lattice paths most commonly begin at the origin. This convention allows encoding all the information about a NE lattice path L in a single permutation pattern, permutation word. The length of the wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gould's Sequence
Gould's sequence is an integer sequence named after Henry W. Gould that counts how many odd numbers are in each row of Pascal's triangle. It consists only of power of two, powers of two, and begins:. :1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, ... For instance, the sixth number in the sequence is 4, because there are four odd numbers in the sixth row of Pascal's triangle (the four bold numbers in the sequence 1, 5, 10, 10, 5, 1). Gould's sequence is also a fractal sequence. Additional interpretations The th value in the sequence (starting from ) gives the highest power of 2 that divides the central binomial coefficient \tbinom, and it gives the numerator of 2^n/n! (expressed as a fraction in lowest terms). Gould's sequence also gives the number of live cells in the th generation of the Rule 90 cellular automaton starting from a single live cell.. It has a characteristic growing sawtooth wave, sawtooth shape that can be used to recognize physical processes that beha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^n(1). In the Hardy hierarchy, is exactly equal to H_(1). Powers of two with Sign (mathematics)#Terminology for signs, non-negative exponents are integers: , , and is two multiplication, multiplied by itself times. The first ten powers of 2 for non-negative values of are: :1, 2, 4, 8, 16 (number), 16, 32 (number), 32, 64 (number), 64, 128 (number), 128, 256 (number), 256, 512 (number), 512, ... By comparison, powers of two with negative exponents are fractions: for positive integer , is one half multiplied by itself times. Thus the first few negative powers of 2 are , , , , etc. Sometimes these are called ''inverse powers of two'' because each is the multiplicative inverse of a positive power of two. Base of the binary numeral sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beta Function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral : \Beta(z_1,z_2) = \int_0^1 t^(1-t)^\,dt for complex number inputs z_1, z_2 such that \operatorname(z_1), \operatorname(z_2)>0. The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol is a Greek capital beta. Properties The beta function is symmetric, meaning that \Beta(z_1,z_2) = \Beta(z_2,z_1) for all inputs z_1 and z_2.. Specifically, see 6.2 Beta Function. A key property of the beta function is its close relationship to the gamma function: : \Beta(z_1,z_2)=\frac A proof is given below in . The beta function is also closely related to binomial coefficients. When (or , by symmetry) is a positive integer, it follows from the definition of the gamma function that : \Beta(m,n) =\fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing Limit (mathematics), limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]