HOME
*





Abscissa Of Convergence
In the field of mathematical analysis, a general Dirichlet series is an infinite series that takes the form of : \sum_^\infty a_n e^, where a_n, s are complex numbers and \ is a strictly increasing sequence of nonnegative real numbers that tends to infinity. A simple observation shows that an 'ordinary' Dirichlet series : \sum_^\infty \frac, is obtained by substituting \lambda_n=\ln n while a power series : \sum_^\infty a_n (e^)^n, is obtained when \lambda_n=n. Fundamental theorems If a Dirichlet series is convergent at s_0=\sigma_0+t_0i, then it is uniformly convergent in the domain : , \arg(s-s_0), \leq \theta \sigma_0. There are now three possibilities regarding the convergence of a Dirichlet series, i.e. it may converge for all, for none or for some values of ''s''. In the latter case, there exist a \sigma_c such that the series is convergent for \sigma>\sigma_c and divergent for \sigma \operatorname(s_0). A Dirichlet series may converge absolutely for all, for no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary (topology)
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the closure of not belonging to the interior of . An element of the boundary of is called a boundary point of . The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set include \operatorname(S), \operatorname(S), and \partial S. Some authors (for example Willard, in ''General Topology'') use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, ''Metric Spaces'' by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tom M
Tom or TOM may refer to: * Tom (given name), a diminutive of Thomas or Tomás or an independent Aramaic given name (and a list of people with the name) Characters * Tom Anderson, a character in '' Beavis and Butt-Head'' * Tom Beck, a character in the 1998 American science-fiction disaster movie '' Deep Impact'' * Tom Buchanan, the main antagonist from the 1925 novel ''The Great Gatsby'' * Tom Cat, a character from the ''Tom and Jerry'' cartoons * Tom Lucitor, a character from the American animated series '' Star vs. the Forces of Evil'' * Tom Natsworthy, from the science fantasy novel '' Mortal Engines'' * Tom Nook, a character in ''Animal Crossing'' video game series * Tom Servo, a robot character from the ''Mystery Science Theater 3000'' television series * Tom Sloane, a non-adult character from the animated sitcom ''Daria'' * Talking Tom, the protagonist from the ''Talking Tom & Friends'' franchise * Tom, a character from the '' Deltora Quest'' books by Emily Rodda * Tom, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward Charles Titchmarsh
Edward Charles "Ted" Titchmarsh (June 1, 1899 – January 18, 1963) was a leading British mathematician. Education Titchmarsh was educated at King Edward VII School (Sheffield) and Balliol College, Oxford, where he began his studies in October 1917. Career Titchmarsh was known for work in analytic number theory, Fourier analysis and other parts of mathematical analysis. He wrote several classic books in these areas; his book on the Riemann zeta-function was reissued in an edition edited by Roger Heath-Brown. Titchmarsh was Savilian Professor of Geometry at the University of Oxford from 1932 to 1963. He was a Plenary Speaker at the ICM in 1954 in Amsterdam. He was on the governing body of Abingdon School from 1935-1947. Awards *Fellow of the Royal Society, 1931 *De Morgan Medal, 1953 *Sylvester Medal The Sylvester Medal is a bronze medal awarded by the Royal Society (London) for the encouragement of mathematical research, and accompanied by a £1,000 prize. It was named ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Variable (mathematics)
In mathematics, a variable (from Latin '' variabilis'', "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula. In mathematical logic, a ''variable'' is either a symbol representing an unspecified term of the theory (a meta-variable), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation. History In ancient works such as Euclid's ''Elements'', single letters refer to geometric points and shapes. In the 7th century, Brahmagupta used different colours to represent th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditional Convergence
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see ''Riemann series theorem''. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R''n'' can converge. A typical conditionally convergent integral is that on the non-negative real axis of \sin (x^2) (see Fresnel integral). See also *Absolute converg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. Absolute convergence is important for the study of infinite series because its definition is strong enough to have properties of finite sums that not all convergent series possess - a convergent series that is not absolutely convergent is called conditionally convergent, while absolutely convergent series behave "nicely". For instance, rearrangements do not change the value of the sum. This is not true for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cauchy–Hadamard Theorem
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, but remained relatively unknown until Hadamard rediscovered it. Hadamard's first publication of this result was in 1888; he also included it as part of his 1892 Ph.D. thesis. Theorem for one complex variable Consider the formal power series in one complex variable ''z'' of the form f(z) = \sum_^ c_ (z-a)^ where a, c_n \in \Complex. Then the radius of convergence R of ''f'' at the point ''a'' is given by \frac = \limsup_ \left( , c_ , ^ \right) where denotes the limit superior, the limit as approaches infinity of the supremum of the sequence values after the ''n''th position. If the sequence values are unbounded so that the is ∞, then the power series does not converge near , while if the is 0 then the radius of convergence is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]