Analytic Proof
{{Short description, Fundamental theory of logical analysis In mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and that does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic (Bolzano 1817). Bolzano's philosophical work encouraged a more abstract reading of when a demonstration could be regarded as analytic, where a proof is analytic if it does not go beyond its subject matter (Sebastik 2007). In proof theory, an analytic proof has come to mean a proof whose structure is simple in a special way, due to conditions on the kind of inferences that ensure none of them go beyond what is contained in the assumptions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inference Rule
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argument forms involving logi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stanford Encyclopedia Of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') is a freely available online philosophy resource published and maintained by Stanford University, encompassing both an online encyclopedia of philosophy and peer-reviewed original publication. Each entry is written and maintained by an expert in the field, including professors from many academic institutions worldwide. Authors contributing to the encyclopedia give Stanford University the permission to publish the articles, but retain the copyright to those articles. Approach and history As of August 5, 2022, the ''SEP'' has 1,774 published entries. Apart from its online status, the encyclopedia uses the traditional academic approach of most encyclopedias and academic journals to achieve quality by means of specialist authors selected by an editor or an editorial committee that is competent (although not necessarily considered specialists) in the field covered by the encyclopedia and peer review. The encyclopedia was created i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conference On Automated Deduction
A conference is a meeting, often lasting a few days, which is organized on a particular subject, or to bring together people who have a common interest. Conferences can be used as a form of group decision-making, although discussion, not always decisions, is the primary purpose of conferences. The term derives from the word ''confer''. History The first known use of "conference" appears in 1527, meaning "a meeting of two or more persons for discussing matters of common concern". It came from the word ''confer'', which means "to compare views or take counsel". However the idea of a conference far predates the word. Arguably, as long as there have been people, there have been meetings and discussions between people. Evidence of ancient forms of conference can be seen in archaeological ruins of common areas where people would gather to discuss shared interests such as "hunting plans, wartime activities, negotiations for peace or the organisation of tribal celebrations". Sinc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frank Pfenning
Frank Pfenning is a German-American professor of computer science, adjunct professor in philosophy, and was head of the Computer Science Department at Carnegie Mellon University from 2013 to 2018. Education and career Pfenning grew up in Rüsselsheim am Main, Rüsselsheim in Germany and studied mathematics and computer science at Technische Universität Darmstadt in Germany. He attended Carnegie Mellon University after receiving a Fulbright Scholarship, and subsequently became a professor in Carnegie Mellon's Computer Science Department. His research includes work in the area of programming language theory, programming languages, logic and type theory, LF (logical framework), logical frameworks, automated theorem proving, automated deduction, and trustworthy computing. He is one of the principal authors of the Twelf system. He also developed Carnegie Mellon's introductory imperative programming course for undergraduates and the C0 programming language used in this course. Hono ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof-theoretic Semantics
Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within a system of inference. Overview Gerhard Gentzen is the founder of proof-theoretic semantics, providing the formal basis for it in his account of cut-elimination for the sequent calculus, and some provocative philosophical remarks about locating the meaning of logical connectives in their introduction rules within natural deduction. The history of proof-theoretic semantics since then has been devoted to exploring the consequences of these ideas. Dag Prawitz extended Gentzen's notion of analytic proof to natural deduction, and suggested that the value of a proof in natural deduction may be understood as its normal form. This idea lies at the basis of the Curry–Howard isomorphism, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calculus Of Structures
In mathematical logic, the calculus of structures is a proof calculus with deep inference for studying the structural proof theory of noncommutative logic. The calculus has since been applied to study linear logic, classical logic, modal logic, and process calculi, and many benefits are claimed to follow in these investigations from the way in which deep inference is made available in the calculus. References * Alessio Guglielmi (2004)., 'A System of Interaction and Structure'. ACM Transactions on Computational Logic. * Kai Brünnler (2004). ''Deep Inference and Symmetry in Classical Proofs''. Logos Verlag. External links Calculus of structures homepage page documenting implementations of logical systems in the calculus of structures, using the Maude system The Maude system is an implementation of rewriting logic. It is similar in its general approach to Joseph Goguen's OBJ3 implementation of equational logic, but based on rewriting logic rather than order-sorted equation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subformula
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbol (formal), symbols from a given alphabet (computer science), alphabet that is part of a formal language. The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff". A formal language can be identified with the set of formulas in the language. A formula is a syntax (logic), syntactic object that can be given a semantic Formal semantics (logic), meaning by means of an interpretation (logic), interpretation. Two key uses of formulas are in propositional logic and predicate logic. Introduction A key use of formulas is in propositional logic and Higher-order logic, predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, Mathematical proo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tableau Method
In proof theory, the semantic tableau (; plural: tableaux), also called an analytic tableau, truth tree, or simply tree, is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics. A method of truth trees contains a fixed set of rules for producing trees from a given logical formula, or set of logical formulas. Those trees will have more formulas at each branch, and in some cases, a branch can come to contain both a formula and its negation, which is to say, a contradiction. In that case, the branch is said to close. If every branch in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cut-elimination
The cut-elimination theorem (or Gentzen's ''Hauptsatz'') is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in part I of his landmark 1935 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule. The Natural Deduction version of cut-elimination, known as ''normalization theorem'', has been first proved for a variety of logics by Dag Prawitz in 1965 (a similar but less general proof was given the same year by Andrès Raggio). The cut rule A sequent is a logical expression relating multiple formulas, in the form , which is to be read as "If all of hold, then at least one of must hold", or (as Gentzen glossed): "If (A_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |