Air Gap (electrical Machine)
   HOME



picture info

Air Gap (electrical Machine)
Air gap in magnetic circuits is a term used to define an intentional gap left in the magnetic material. In stationary devices, like inductors and transformers, the air gap is used for a few purposes: * to minimize the magnetic saturation of their cores due to the direct current (DC) that might be flowing through the coils. Without saturation the inductance (and thus the blocking capability) of a choke stays constant regardless of the DC current flowing; * counter-intuitively, if a DC magnetization is present in an inductor, an increased (up to some limit) air gap actually incrementally increases the effective inductance; * in a shunt reactor an air gap is used for two reasons: ** with an ungapped core the reluctance is small, so very little reactive power is obtained with the disproportionate effect of the iron loss; ** an increase of the gap reduces the ratio of the total loss to the reactive power, with the limiting factor being the increased heating due to the copper loss. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reluctance
Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux. It represents the opposition to magnetic flux, and depends on the geometry and composition of an object. Magnetic reluctance in a magnetic circuit is analogous to electrical resistance in an electrical circuit An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e. ... in that resistance is a measure of the opposition to the electric current. The definition of magnetic reluctance is analogous to Ohm's law in this respect. However, magnetic flux passing through a reluctance does not give rise to dissipation of heat as it does for current through a resistance. Thus, the analogy cannot be used for modelling energ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous Generator
An alternator (or synchronous generator) is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Gordon R. Selmon, ''Magnetoelectric Devices'', John Wiley and Sons, 1966 no ISBN pp. 391-393 Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually, the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators. Large 50 or 60 Hz three-phase alternators in power plants generate most of the world's electric power, which is distributed by electric power grids. History Altern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stator
The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors, or biological rotors (such as bacterial flagella or ATP synthase). Energy flows through a stator to or from the rotating component of the system, the rotor. In an electric motor, the stator provides a magnetic field that drives the rotating armature; in a generator, the stator converts the rotating magnetic field to electric current. In fluid powered devices, the stator guides the flow of fluid to or from the rotating part of the system. Design Motor stators are made either from iron/steel or from a printed circuit board (PCB). Originally applied to low-power applications, PCB stators can be lighter, smaller, and less noisy. One design embeds thin copper traces in the PCB stator that serve as the windings. The traces are interleaved with epoxy-glass laminates, that insulate each coil from its neighbors. An air core replaces the traditional iron core ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alternator
An alternator (or synchronous generator) is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Gordon R. Selmon, ''Magnetoelectric Devices'', John Wiley and Sons, 1966 no ISBN pp. 391-393 Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually, the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators. Large 50 or 60 Hz three-phase alternators in power plants generate most of the world's electric power, which is distributed by electric power grids. History ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotor (electric)
The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.Staff. "Understanding Alternators. What Is an Alternator and How Does It Work." N.p., n.d. Web. 24 November 2014 . Early development An early example of electromagnetic rotation was the first rotary machine built by Ányos Jedlik with electromagnets and a commutator, in 1826-27. Other pioneers in the field of electricity include Hippolyte Pixii who built an alternating current generator in 1832, and William Ritchie's construction of an electromagnetic generator with four rotor coils, a commutator and brushes, also in 1832. Development quickly included more useful applications such as Moritz Hermann Jacobi's motor that could lift 10 to 12 pounds with a speed of one foot per second, about 15 watts of mechanical power in 1834. In 18 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Copper Loss
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement. Copper is one of the few metals that can occur in nature in a directly usable, unalloyed metallic form. This means that copper is a native metal. This led to very early human use in several regions, from . Thousands of years later, it was the first metal to be smelted from sulfide ores, ; the first metal to be cast into a shape in a mold, ; and the first metal to be purposely alloyed with another metal, tin, to create bronze, . Commo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Core
A magnetic core is a piece of magnetism, magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, electric generator, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as Ferrite (magnet), ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core. The use of a magnetic core can increase the strength of magnetic field in an electromagnetic coil by a factor of several hundred times what it would be without the core. However, magnetic cores have side effects which must be taken into account. In alternating current (AC) devices they cause energy losses, call ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reactive Power
In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt. The portion of instantaneous power that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as instantaneous active power, and its time average is known as active power or real power. The portion of instantaneous power that results in no net transfer of energy but instead oscillates between the source and load in each cycle due to stored energy is known as instantaneous reactive power, and its amplitude is the absolute value of reactive power. Active, reactive, apparent, and complex power in sinusoidal steady-state For a simple alternating current (AC) circuit in steady-state; consisting of a source and a linear time-invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shunt Reactor
In an electric power transmission grid system, switchyard reactors are large inductors installed at substations to help stabilize the power system. For transmission lines, the space between the overhead line and the ground forms a capacitor parallel to transmission line, which causes an increase in voltage as the distance increases. To offset the capacitive effect of the transmission line and to regulate the voltage and reactive power of the power system, reactors are connected either at line terminals or at the middle, thereby improving the voltage profile of transmission line. In large systems with many generators connected in parallel, it may be necessary to use a series reactor to prevent excessively large current flow during a short circuit; this protects transmission line conductors and switching apparatus from damage due to high currents and forces produced during a short circuit. A shunt reactor is connected in parallel with a transmission line or other load. A series re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Circuit
A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, Electric generator, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads. The relation between magnetic flux, magnetomotive force, and magnetic reluctance in an Magnetic saturation, unsaturated magnetic circuit can be described by Hopkinson's law, which bears a superficial resemblance to Ohm's law in electrical circuits, resulting in a one-to-one correspondence between properties of a magnetic circuit and an analogous electric circuit. Using this concept the magnetic fields of complex devices such as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]