HOME





Acetogen
An acetogen is a microorganism that generates acetate (CH3COO−) as an end product of anaerobic respiration or fermentation. However, this term is usually employed in a narrower sense only to those bacteria and archaea that perform anaerobic respiration and carbon fixation simultaneously through the reductive acetyl coenzyme A (acetyl-CoA) pathway (also known as the Wood–Ljungdahl pathway, Wood-Ljungdahl pathway). These genuine acetogens are also known as "homoacetogens" and they can produce acetyl-CoA (and from that, in most cases, acetate as the end product) from two molecules of carbon dioxide (CO2) and four molecules of Hydrogen, molecular hydrogen (H2). This process is known as acetogenesis, and is different from acetate fermentation, although both occur in the absence of oxygen, molecular oxygen (O2) and produce acetate. Although previously thought that only bacteria are acetogens, some archaea can be considered to be acetogens. Acetogens are found in a variety of habitats ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acetogenesis
Acetogenesis is a process through which acetyl-CoA or acetic acid is produced by anaerobic bacteria through the Redox, reduction of Carbon dioxide, via the Wood–Ljungdahl pathway. Other microbial processes that produce acetic acid (like certain types of fermentation or the Oxidative decarboxylation, oxidative breakdown of carbohydrates or ethanol by acetic acid bacteria) are not considered acetogenesis. The diverse bacterial species capable of acetogenesis are collectively called acetogens. Reduction of to acetic acid via the Wood–Ljungdahl pathway requires an electron donor, electron source (e.g., Hydrogen, H2, Carbon monoxide, CO, formate, etc.). When acetogens are grown autotrophically, they Biosynthesis, synthesize acetic acid only through the Wood–Ljungdahl pathway; but when they are grown heterotrophically, they can produce additional acetic acid by oxidation of the carbon source (carbohydrates, organic acids, or alcohols). Once produced, acetyl-CoA can be incorporated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anaerobic Digestion
Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to Waste management, manage waste or to produce fuels. Much of the Fermentation (biochemistry), fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion. Anaerobic digestion occurs naturally in some soils and in lake and oceanic basin sediments, where it is usually referred to as "anaerobic activity". This is the source of Methane#Occurrence, marsh gas methane as discovered by Alessandro Volta in 1776. Anaerobic digestion comprises four stages: * Hydrolysis *Acidogenesis *Acetogenesis *Methanogenesis The digestion process begins with bacterial hydrolysis of the input materials. Insoluble organic polymers, such as carbohydrates, are broken down to soluble derivatives that become available for other bacteria. Acidogenesis, Acidogen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carbon Fixation
Biological carbon fixation, or сarbon assimilation, is the Biological process, process by which living organisms convert Total inorganic carbon, inorganic carbon (particularly carbon dioxide, ) to Organic compound, organic compounds. These organic compounds are then used to store energy and as structures for other Biomolecule, biomolecules. Carbon is primarily fixed through photosynthesis, but some organisms use chemosynthesis in the absence of sunlight. Chemosynthesis is carbon fixation driven by chemical energy rather than from sunlight. The process of biological carbon fixation plays a crucial role in the global carbon cycle, as it serves as the primary mechanism for removing from the atmosphere and incorporating it into Biomass (ecology), living biomass. The primary production of organic compounds allows carbon to enter the biosphere. Carbon is considered essential for life as a base element for building organic compounds. The flow of carbon from the Earth's atmosphere, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syntrophy
In biology, syntrophy, syntrophism, or cross-feeding () is the cooperative interaction between at least two microbial species to degrade a single substrate. This type of biological interaction typically involves the transfer of one or more metabolic intermediates between two or more metabolically diverse microbial species living in close proximity to each other. Thus, syntrophy can be considered an obligatory interdependency and a mutualistic metabolism between different microbial species, wherein the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other(s). Microbial syntrophy Syntrophy is often used synonymously for mutualistic symbiosis especially between at least two different bacterial species. Syntrophy differs from symbiosis in a way that syntrophic relationship is primarily based on closely linked metabolic interactions to maintain thermodynamically favorable lifestyle in a given environment. Syntrophy plays an important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wood–Ljungdahl Pathway
The Wood–Ljungdahl pathway is a set of biochemical reactions used by some bacteria. It is also known as the reductive acetyl-coenzyme A (acetyl-CoA) pathway. This pathway enables these organisms to use hydrogen () as an electron donor, and carbon dioxide () as an electron acceptor and as a building block to generate acetate for biosynthesis. In this pathway carbon dioxide is reduced to carbon monoxide (CO) and formic acid (HCOOH) or directly into a formyl group (R−CH=O), the formyl group is reduced to a methyl group (−CH3) and then combined with the carbon monoxide and coenzyme A to produce acetyl-CoA. Two specific enzymes participate on the carbon monoxide side of the pathway: CO dehydrogenase and acetyl-CoA synthase. The former catalyzes the reduction of the CO2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. Some anaerobic bacteria use the Wood–Ljungdahl pathway in reverse to break down acetate. For example, sulfate-reducing b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfate-reducing Bacteria
Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than Allotropes of oxygen, molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in Anaerobic respiration, aerobic respiration. Most sulfate-reducing microorganisms can also reduce some other oxidized inorganic sulfur Chemical compound, compounds, such as sulfite (), dithionite (), thiosulfate (), trithionate (), tetrathionate (), Allotropes of sulfur, elemental sulfur (S8), and polysulfides (). Other than sulfate reduction, some sulfate-reducing microorganisms are also capable of other reactions like disproportionation of sulfur compounds. Depending on the context, "sulfate-reduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit the air, soil, water, Hot spring, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the nitrogen fixation, fixation of nitrogen from the Earth's atmosphere, atmosphere. The nutrient cycle includes the decomposition of cadaver, dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archaea
Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even though the domain Archaea Cladistics, cladistically includes eukaryotes, the term "archaea" (: archaeon , from the Greek "ἀρχαῖον", which means ancient) in English still generally refers specifically to prokaryotic members of Archaea. Archaea were initially Taxonomy (biology), classified as bacteria, receiving the name archaebacteria (, in the Archaebacteria Kingdom (biology), kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from Bacteria and Eukaryote, Eukaryota. Archaea are further divided into multiple recognized phylum, phyla. Classification is difficult because most have not been Isolation (microbiology), isolated in a laboratory and have been detected only by their Gene, gene s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methanogen
Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism. Methane production, or methanogenesis, is the only biochemical pathway for Adenosine triphosphate, ATP generation in methanogens. All known methanogens belong exclusively to the Domain (biology), domain Archaea, although some bacteria, plants, and animal cells are also known to produce methane. However, the biochemical pathway for methane production in these organisms differs from that in methanogens and does not contribute to ATP formation. Methanogens belong to various Phylum, phyla within the domain Archaea. Previous studies placed all known methanogens into the superphylum Euryarchaeota. However, recent phylogenomic data have led to their reclassification into several different phyla. Methanogens are common in various anoxic environments, such as marine and freshwater sediments, wetlands, the Gastrointestinal tract, digestive tracts of animals, wastewater treatment ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter. Under standard conditions, hydrogen is a gas of diatomic molecules with the chemical formula, formula , called dihydrogen, or sometimes hydrogen gas, molecular hydrogen, or simply hydrogen. Dihydrogen is colorless, odorless, non-toxic, and highly combustible. Stars, including the Sun, mainly consist of hydrogen in a plasma state, while on Earth, hydrogen is found as the gas (dihydrogen) and in molecular forms, such as in water and organic compounds. The most common isotope of hydrogen (H) consists of one proton, one electron, and no neutrons. Hydrogen gas was first produced artificially in the 17th century by the reaction of acids with metals. Henry Cavendish, in 1766–1781, identified hydrogen gas as a distinct substance and discovere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Methanosarcina Barkeri
''Methanosarcina barkeri'' is the type species of the genus ''Methanosarcina'', characterized by its wide range of substrates used in methanogenesis. While most known methanogens produce methane from H2 and CO2, ''M. barkeri'' can also dismutate methylated compounds such as methanol or methylamines, oxidize acetate, and reduce methylated compounds with H2. This makes ''M. barkeri'' one of the few ''Methanosarcina'' species capable of utilizing all four known methanogenesis pathways. Even among other ''Methanosarcinales'', which commonly utilize a broad range of substrates, the ability to grow on H2 and CO2 is rare due to the requirement for high H2 partial pressure. Like other ''Methanosarcina'' species, ''M. barkeri'' has a large genome (4.53 Mbp for the type strain MS, 4.9 Mbp for the Wiesmoor strain, and 4.5 Mbp for the CM2 strain), although it is significantly smaller than the largest archaeal genome of ''Methanosarcina acetivorans'' (5.75 Mbp for the type strain C2A). It is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Food Web
A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms (such as carnivorous plants) occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources. The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that link an ecosystem into a unified system of exchange. There are different kinds of consumer–resource interactions that can be roughly divided into herbivory, carnivory, scavenging, and parasitism. Some of the organic matter eaten by heterotrophs, such as sugars, provides energy. Autotrophs and hetero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]