Acceleration Sensor
An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change of velocity) of the object relative to an observer who is in free fall (that is, relative to an inertial frame of reference). Proper acceleration is different from coordinate acceleration, which is acceleration with respect to a given coordinate system, which may or may not be accelerating. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity straight upwards of about ''g'' ≈ 9.81 m/s2. By contrast, an accelerometer that is in free fall will measure zero acceleration. Accelerometers have many uses in industry, consumer products, and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. In unmanned aerial vehicles, accelerometers help to stabilize flight. Micromachined micro-electromechanical systems (MEMS) acceler ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Acceleration
In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero. Proper acceleration contrasts with coordinate acceleration, which is dependent on choice of coordinate systems and thus upon choice of observers (see Acceleration (special relativity)#Three-acceleration, three-acceleration in special relativity). In the standard inertial coordinates of special relativity, for unidirectional motion, proper acceleration is the rate of change of proper velocity with respect to coordinate time. In an inertial frame in which the object is momentarily at rest, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gravity Gradiometry
Gravity gradiometry is the study of variations (gravitational anomaly, ''anomalies'') in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor; it is given in coordinates by the Jacobian matrix of the acceleration vector (g=[g_x g_y g_z]^T), totaling 9 Scalar (physics), scalar quantities: : G=\nabla g = \begin \partial/\partial & \partial/\partial & \partial/\partial\\ \partial/\partial & \partial/\partial & \partial/\partial\\ \partial/\partial & \partial/\partial & \partial/\partial \end It has dimension (physics), dimension of square reciprocal time, in unit of measurement, units of s−2 (or mm−1s−2). Gravity gradiometry is used by oil and mineral prospectors to measure the density of the Bedrock, subsurface, effectively by measuring the rate of change of gravitational acceleration due to underlying rock properties. From this information it is possible to build a picture of subsurface ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Damping
In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid (see viscous drag), surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analog Devices
Analog Devices, Inc. (ADI), also known simply as Analog, is an American multinational corporation, multinational semiconductor company specializing in data conversion, signal processing, and power management technology, headquartered in Wilmington, Massachusetts. The company manufactures analog, Mixed-signal integrated circuit, mixed-signal and digital signal processing, digital signal processing (DSP) integrated circuits (ICs) used in electronic equipment. These technologies are used to convert, condition and process real-world phenomena, such as light, sound, temperature, motion, and pressure into electrical signals. Analog Devices has approximately 100,000 customers in the following industries: communications, computer, instrumentation, military/aerospace, automotive, and consumer electronics applications.Bloomberg.ADI: Analog Devices Inc Summary" Retrieved January 30, 2011. History The company was founded by two MIT graduates, Ray Stata and Matthew Lorber in 1965. The same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gal (unit)
The gal (symbol: Gal), sometimes called galileo after Galileo Galilei, is a unit of acceleration typically used in precision gravimetry. BIPM ''SI brochure'', 8th ed. 2006Table 9: Non-SI units associated with the CGS and the CGS-Gaussian system of units. The gal is defined as 1 centimeter per second squared (1 cm/s2). The milligal (mGal) and microgal (μGal) are respectively one thousandth and one millionth of a gal. The gal is not part of the International System of Units (known by its French-language initials "SI"). In 1978 the CIPM decided that it was permissible to use the gal "with the SI until the CIPM considers that tsuse is no longer necessary". Use of the gal was deprecated by the standard ISO 80000-3:2006, now superseded. The gal is a derived unit, defined in terms of the centimeter–gram–second (CGS) base unit of length, the centimeter, and the second, which is the base unit of time in both the CGS and the modern SI system. In SI base units, 1 Gal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centimetre–gram–second System Of Units
The centimetre–gram–second system of units (CGS or cgs) is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways in which the CGS system was extended to cover electromagnetism. The CGS system has been largely supplanted by the MKS system based on the metre, kilogram, and second, which was in turn extended and replaced by the International System of Units (SI). In many fields of science and engineering, SI is the only system of units in use, but CGS is still prevalent in certain subfields. In measurements of purely mechanical systems (involving units of length, mass, force, energy, pressure, and so on), the differences between CGS and SI are straightforward: the unit-conversion factors are all powers of 10 as and . For example, the CGS unit of force is the dyne, w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metre Per Second Squared
The metre per second squared or metre per square second is the unit of acceleration in the International System of Units (SI). As a derived unit, it is composed from the SI base units of length, the metre, and of time, the second. Its symbol is written in several forms as m/s2, m·s−2 or ms−2, , or less commonly, as (m/s)/s. As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity. Example When an object experiences a constant acceleration of one metre per second squared (1 m/s2) from a state of rest, it achieves the speed of 5 m/s after 5 seconds and 10 m/s after 10 seconds. The average acceleration ''a'' can be calculated by dividing the speed ''v'' (m/s) by the time ''t'' (s), so the average acceleration in the first example would be calculated: :a = \frac = \frac = 1\text = 1\text^2. Related units Newton's second law states that force equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International System Of Units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures, which is abbreviated BIPM from . The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as products of powers of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parachuting
Parachuting and skydiving are methods of descending from a high point in an atmosphere to the ground or ocean surface with the aid of gravity, involving the control of speed during the descent using a parachute or multiple parachutes. For human skydiving, there is often a phase of free fall (the skydiving segment), where the parachute has not yet been deployed and the body gradually accelerates to terminal velocity. In cargo parachuting, the parachute descent may begin immediately, such as a parachute- airdrop in the lower atmosphere of Earth, or it may be significantly delayed. For example, in a planetary atmosphere, where an object is descending "under parachute" following atmospheric entry from space, may occur only after the hypersonic entry phase and initial deceleration that occurs due to friction with the thin upper atmosphere. History The first parachute jump in history was made on 22 October 1797 by Frenchman André-Jacques Garnerin above Parc Monceau, Pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Terminal Velocity
Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force (''Fd'') and the buoyancy is equal to the downward force of gravity (''FG'') acting on the object. Since the net force on the object is zero, the object has zero acceleration. For objects falling through air at normal pressure, the buoyant force is usually dismissed and not taken into account, as its effects are negligible. As the speed of an object increases, so does the drag force acting on it, which also depends on the substance it is passing through (for example air or water). At some speed, the drag or force of resistance will be equal to the gravitational pull on the object. At this point the object stops accelerating and continues falling at a constant speed called the terminal velocity (also called settling velocity). An object moving downward faster than the terminal velocity (for example because it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Gravity
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as . This value was established by the third General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration. The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. Although the symbol is sometimes used for standard gravity, (without a suffix) can also mean the local acceleration due to local gravity and centrifugal acceleration, which varies depending on on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G-force
The g-force or gravitational force equivalent is a Specific force, mass-specific force (force per unit mass), expressed in Unit of measurement, units of standard gravity (symbol ''g'' or ''g''0, not to be confused with "g", the symbol for grams). It is used for sustained accelerations that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 ''g'', equaling the conventional value of gravitational acceleration on Earth, about . More transient acceleration, accompanied with significant jerk (physics), jerk, is called Shock (mechanics), ''shock''. When the g-force is produced by the surface of one object being pushed by the surface of another object, the reaction force to this push produces an equal and opposite force for every unit of each object's mass. The types of forces involved are transmitted through objects by interior Stress (mechanics), mechanical stresses. Gravitational acceleration is one cause of an object's accelera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |