Zermelo's Categoricity Theorem
Zermelo's categoricity theorem was proven by Ernst Zermelo in 1930. It states that all models of a certain second-order version of the Zermelo-Fraenkel axioms of set theory are isomorphic to a member of a certain class of sets. Statement Let \mathrm^2 denote Zermelo-Fraenkel set theory, but with a second-order version of the axiom of replacement formulated as follows: : \forall F\forall x\exists y\forall z(z\in y \iff \exists w(w\in x\land z = F(w))) , namely the second-order universal closure of the axiom schema of replacement.G. Uzquiano, "Models of Second-Order Zermelo Set Theory". Bulletin of Symbolic Logic, vol. 5, no. 3 (1999), pp.289--302.p. 289 Then every model of \mathrm^2 is isomorphic to a set V_\kappa in the von Neumann hierarchy, for some inaccessible cardinal \kappa., Theorem 1. Original presentation Zermelo originally considered a version of \mathrm^2 with urelements. Rather than using the modern satisfaction relation \vDash, he defines a "normal domain" to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ernst Zermelo
Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel set theory, Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem. Furthermore, his 1929 work on ranking chess players is the first description of a model for Pairwise comparison (psychology), pairwise comparison that continues to have a profound impact on various applied fields utilizing this method. Life Ernst Zermelo graduated from Berlin's Luisenstädtisches Gymnasium (now ) in 1889. He then studied mathematics, physics and philosophy at the University of Berlin, the University of Halle, and the University of Freiburg. He finished his doctorate in 1894 at the University of Berlin, awarded for a dissertation on the calculus of variations (''Untersuchungen zur Variationsrechnung''). Zermelo remained at the University of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Neumann Hierarchy
The term () is used in German surnames either as a nobiliary particle indicating a noble patrilineality, or as a simple preposition used by commoners that means or . Nobility directories like the often abbreviate the noble term to ''v.'' In medieval or early modern names, the particle was at times added to commoners' names; thus, meant . This meaning is preserved in Swiss toponymic surnames and in the Dutch , which is a cognate of but also does not necessarily indicate nobility. Usage Germany and Austria The abolition of the monarchies in Germany and Austria in 1919 meant that neither state has a privileged nobility, and both have exclusively republican governments. In Germany, this means that legally ''von'' simply became an ordinary part of the surnames of the people who used it. There are no longer any legal privileges or constraints associated with this naming convention. According to German alphabetical sorting, people with ''von'' in their surnames – of nob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inaccessible Cardinal
In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since about 1950, "inaccessible cardinal" has typically meant "strongly inaccessible cardinal" whereas before it has meant "weakly inaccessible cardinal". Weakly inaccessible cardinals were introduced by . Strongly inaccessible cardinals were introduced by and ; in the latter they were referred to along with \aleph_0 as ''Grenzzahlen'' ( English "limit numbers"). Every strongly inaccessible cardinal is a weakly inaccessible cardinal. The generalized continuum hypothesis implies that all weakly inaccessible cardinals are strongly inaccessible as well. The two notions of an inaccessible cardinal \kappa describe a cardinality \kappa which can not be obtained as the cardinality of a result of typical set-theoretic operations involving only sets of c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zermelo Set Theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering. The axioms of Zermelo set theory The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In The Foundations Of Mathematics
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasoni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |