HOME
*





Weyl Sum
In mathematics, an exponential sum may be a finite Fourier series (i.e. a trigonometric polynomial), or other finite sum formed using the exponential function, usually expressed by means of the function :e(x) = \exp(2\pi ix).\, Therefore, a typical exponential sum may take the form :\sum_n e(x_n), summed over a finite sequence of real numbers ''x''''n''. Formulation If we allow some real coefficients ''a''''n'', to get the form :\sum_n a_n e(x_n) it is the same as allowing exponents that are complex numbers. Both forms are certainly useful in applications. A large part of twentieth century analytic number theory was devoted to finding good estimates for these sums, a trend started by basic work of Hermann Weyl in diophantine approximation. Estimates The main thrust of the subject is that a sum :S=\sum_n e(x_n) is ''trivially'' estimated by the number ''N'' of terms. That is, the absolute value :, S, \le N\, by the triangle inequality, since each summand has absolu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dyson Equation
In quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy \Sigma, and represents the contribution to the particle's energy, or effective mass, due to interactions between the particle and its environment. In electrostatics, the energy required to assemble the charge distribution takes the form of self-energy by bringing in the constituent charges from infinity, where the electric force goes to zero. In a condensed matter context relevant to electrons moving in a material, the self-energy represents the potential felt by the electron due to the surrounding medium's interactions with it. Since electrons repel each other the moving electron polarizes, or causes to displace the electrons in its vicinity and then changes the potential of the moving electron fields. These are examples of self-energy. Characteristics Mathematically, this energy is equal to the so-called on mass shell value of the proper self-en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kloosterman Sum
In mathematics, a Kloosterman sum is a particular kind of exponential sum. They are named for the Dutch mathematician Hendrik Kloosterman, who introduced them in 1926 when he adapted the Hardy–Littlewood circle method to tackle a problem involving positive definite diagonal quadratic forms in four as opposed to five or more variables, which he had dealt with in his dissertation in 1924. Let be natural numbers. Then :K(a,b;m)=\sum_ e^. Here ''x*'' is the inverse of modulo . Context The Kloosterman sums are a finite ring analogue of Bessel functions. They occur (for example) in the Fourier expansion of modular forms. There are applications to mean values involving the Riemann zeta function, primes in short intervals, primes in arithmetic progressions, the spectral theory of automorphic functions and related topics. Properties of the Kloosterman sums *If or then the Kloosterman sum reduces to the Ramanujan sum. * depends only on the residue class of and modulo . Furtherm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauss Sum
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically :G(\chi) := G(\chi, \psi)= \sum \chi(r)\cdot \psi(r) where the sum is over elements of some finite commutative ring , is a group homomorphism of the additive group into the unit circle, and is a group homomorphism of the unit group into the unit circle, extended to non-unit , where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet -functions, where for a Dirichlet character the equation relating and ) (where is the complex conjugate of ) involves a factor :\frac. History The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for the field of residues modulo a prime number , and the Legendre symbol. In this case Gauss proved that or for congruent to 1 or 3 m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Ring
In mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups, the theory of finite rings is simpler than that of finite groups. For instance, the classification of finite simple groups was one of the major breakthroughs of 20th century mathematics, its proof spanning thousands of journal pages. On the other hand, it has been known since 1907 that any finite simple ring is isomorphic to the ring M_n(\mathbb_q) of ''n''-by-''n'' matrices over a finite field of order ''q'' (as a consequence of Wedderburn's theorems, described below). The number of rings with ''m'' elements, for ''m'' a natural number, is listed under in the On-Line Encyclopedia of Integer Sequences. Finit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Class
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Summation
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation, named after Niels Henrik Abel who introduced it in 1826. Statement Suppose \ and \ are two sequences. Then, :\sum_^n f_k(g_-g_k) = \left(f_g_ - f_m g_m\right) - \sum_^n g_(f_- f_). Using the forward difference operator \Delta, it can be stated more succinctly as :\sum_^n f_k\Delta g_k = \left(f_ g_ - f_m g_m\right) - \sum_^ g_\Delta f_k, Summation by parts is an analogue to integration by parts: :\int f\,dg = f g - \int g\,df, or to Abel's summation formula: :\sum_^n f(k)(g_-g_)= \left(f(n)g_ - f(m) g_m\right) - \int_^n g_ f'(t) dt. An alternative statement is :f_n g_n - f_m g_m = \sum_^ f_k\Delta g_k + \sum_^ g_k\Delta f_k + \sum_^ \Delta f_k \Delta g_k which is analogous to the integration by parts formula for semimartingales. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Large Sieve Method
The large sieve is a method (or family of methods and related ideas) in analytic number theory. It is a type of sieve where up to half of all residue classes of numbers are removed, as opposed to small sieves such as the Selberg sieve wherein only a few residue classes are removed. The method has been further heightened by the larger sieve which removes arbitrarily many residue classes. Name Its name comes from its original application: given a set S \subset \ such that the elements of ''S'' are forbidden to lie in a set ''Ap'' ⊂ Z/''p'' Z modulo every prime ''p'', how large can ''S'' be? Here ''A''''p'' is thought of as being large, i.e., at least as large as a constant times ''p''; if this is not the case, we speak of a ''small sieve''. History The early history of the large sieve traces back to work of Yu. B. Linnik, in 1941, working on the problem of the least quadratic non-residue. Subsequently Alfréd Rényi worked on it, using probability methods. It was only two de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vinogradov Method
Vinogradov or Vinogradoff (russian: Виногра́дов) is a common Russian last name derived from the Russian word виноград (''vinograd'', meaning "grape" and виноградник ''vinogradnik'', meaning "vineyard"). Vinogradova (russian: Виноградова) is a feminine version of the same name. Notable people with the surname include: * Aleksandr Vinogradov (writer) (1930–2011), a Russian writer * Aleksandr Vinogradov (canoeist) (born 1951), Russian sprint canoer * Alexandre Mikhailovich Vinogradov (1938-2019), Russian and Italian mathematician * Alexander Vinogradov (geochemist), (1895–1975), Soviet geochemist, academician * Alexander Vinogradov (bass) (born 1976), a Russian bass opera singer * Alexandra Vinogradova (born 1988), Russian volleyballer * Alexei Vinogradov (1899–1940), a Soviet World War II brigade commander * Anton Vinogradov (born 1973), a Russian voice actor * Askold Vinogradov (1929–2005), a Russian mathematician * Dagnis Vinogra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]