Virial Stress
   HOME
*





Virial Stress
Virial stress is a measure of mechanical stress on an atomic scale for homogeneous systems. The expression of the (local) virial stress can be derived as the functional derivative of the free energy of a molecular system with respect to the deformation tensor.Morante, S., G. C. Rossi, and M. Testa. "The stress tensor of a molecular system: An exercise in statistical mechanics." The Journal of chemical physics 125.3 (2006): 034101, http://aip.scitation.org/doi/abs/10.1063/1.2214719. Volume averaged Definition The instantaneous volume averaged virial stress is given by :\tau_ = \frac \sum_ \left(-m^ (u_i^- \bar_i) (u_j^- \bar_j) + \frac \sum_ ( x_i^ - x_i^) f_j^\right) where * k and \ell are atoms in the domain, * \Omega is the volume of the domain, * m^ is the mass of atom ''k'', * u_i^ is the ''i''th component of the velocity of atom ''k'', * \bar_j is the ''j''th component of the average velocity of atoms in the volume, * x_i^ is the ''i''th component of the position of atom ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stress (physics)
In continuum mechanics, stress is a physical quantity. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as ''force per unit area''. When an object is pulled apart by a force it will cause elongation which is also known as deformation, like the stretching of an elastic band, it is called tensile stress. But, when the forces result in the compression of an object, it is called compressive stress. It results when forces like Tension (physics), tension or Compression (physics), compression act on a body. The greater this force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Therefore, stress is measured in newton per square meter (N/m2) or pascal (Pa). Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while deformation (mechanics)#Strain, strain is the measure of the deformation of the material. For example, when a solid vertic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deformation Tensor
Deformation can refer to: * Deformation (engineering), changes in an object's shape or form due to the application of a force or forces. ** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies. * Deformation (meteorology), a measure of the rate at which the shapes of clouds and other fluid bodies change. * Deformation (mathematics), the study of conditions leading to slightly different solutions of mathematical equations, models and problems. * Deformation (volcanology), a measure of the rate at which the shapes of volcanoes change. * Deformation (biology), a harmful mutation or other deformation in an organism. See also * Deformity (medicine), a major difference in the shape of a body part or organ compared to its common or average shape. * Plasticity (physics), the study of the non-reversible deformation of materials subjected to forces. * Super-deformed Chibi, also known as super deformation, or S.D. is a style of caricatur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15 degrees on the Celsius scale (International System of Units), Note: The triple point of water is 0.01 °C, not 0 °C; thus 0 K is −2890.15 °C, not −273.16 °C. which equals −459.67 degrees on the Fahrenheit scale ( United States customary units or Imperial units). The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. It is commonly thought of as the lowest temperature possible, but it is not the lowest ''enthalpy'' state poss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ensemble Average
In physics, specifically statistical mechanics, an ensemble (also statistical ensemble) is an idealization consisting of a large number of virtual copies (sometimes infinitely many) of a system, considered all at once, each of which represents a possible state that the real system might be in. In other words, a statistical ensemble is a set of systems of particles used in statistical mechanics to describe a single system. The concept of an ensemble was introduced by J. Willard Gibbs in 1902. A thermodynamic ensemble is a specific variety of statistical ensemble that, among other properties, is in statistical equilibrium (defined below), and is used to derive the properties of thermodynamic systems from the laws of classical or quantum mechanics. Physical considerations The ensemble formalises the notion that an experimenter repeating an experiment again and again under the same macroscopic conditions, but unable to control the microscopic details, may expect to observe a rang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virial Theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states \left\langle T \right\rangle = -\frac12\,\sum_^N \bigl\langle \mathbf_k \cdot \mathbf_k \bigr\rangle where is the total kinetic energy of the particles, represents the force on the th particle, which is located at position , and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from ''vis'', the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870. The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Barometric Formula
The barometric formula, sometimes called the ''exponential atmosphere'' or ''isothermal atmosphere'', is a formula used to model how the pressure (or density) of the air changes with altitude. The pressure drops approximately by 11.3 pascals per meter in first 1000 meters above sea level. Pressure equations There are two different equations for computing pressure at various height regimes below 86 km (or 278,400 feet). The first equation is used when the value of standard temperature lapse rate is not equal to zero: P = P_b \left frac\right The second equation is used when standard temperature lapse rate equals zero: P = P_b \exp \left frac\right/math> where: *P_b = reference pressure ( Pa) *T_b = reference temperature ( K) *L_b = temperature lapse rate (K/m) in ISA *h = height at which pressure is calculated (m) *h_b = height of reference level ''b'' (meters; e.g., ''hb'' = 11 000 m) *R^* = universal gas constant: 8.3144598 J/(mol·K) *g_0 = gravitational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virial Theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states \left\langle T \right\rangle = -\frac12\,\sum_^N \bigl\langle \mathbf_k \cdot \mathbf_k \bigr\rangle where is the total kinetic energy of the particles, represents the force on the th particle, which is located at position , and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from ''vis'', the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870. The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]