HOME





Upper P-series
In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the ''p''-core of a group. The normal core Definition For a group ''G'', the normal core or normal interiorRobinson (1996) p.16 of a subgroup ''H'' is the largest normal subgroup of ''G'' that is contained in ''H'' (or equivalently, the intersection of the conjugates of ''H''). More generally, the core of ''H'' with respect to a subset ''S'' ⊆ ''G'' is the intersection of the conjugates of ''H'' under ''S'', i.e. :\mathrm_S(H) := \bigcap_. Under this more general definition, the normal core is the core with respect to ''S'' = ''G''. The normal core of any normal subgroup is the subgroup itself. Dual to the concept of normal core is that of which is the smallest normal subgroup of ''G'' containing ''H''. Significance Normal cores are important in the context of group actions on sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hidden Subgroup Problem
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's algorithms for factoring and finding discrete logarithms in quantum computing are instances of the hidden subgroup problem for finite abelian groups, while the other problems correspond to finite groups that are not abelian. Problem statement Given a group G, a subgroup H \leq G, and a set X, we say a function f : G \to X hides the subgroup H if for all g_1, g_2 \in G, f(g_1) = f(g_2) if and only if g_1 H = g_2 H. Equivalently, f is constant on each coset of ''H'', while it is different between the different cosets of ''H''. Hidden subgroup problem: Let G be a group, X a finite set, and f : G \to X a function that hides a subgroup H \leq G. The function f is given v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Representation Theory
Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field ''K'' of positive characteristic ''p'', necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory. Within finite group theory, character-theoretic results proved by Richard Brauer using modular representation theory played an important role in early progress towards the classification of finite simple groups, especially for simple groups whose characterization was not amenable to purely group-theoretic methods because their Sylow 2-subgroups were too small in an appropriate sense. Also, a general result on embedding of elements of order 2 in finite groups called the Z* theorem, proved by George Glauberman using the theory developed by Brauer, was par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-constrained
In mathematics, a p-constrained group is a finite group resembling the centralizer of an element of prime order ''p'' in a group of Lie type over a finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ... of characteristic ''p''. They were introduced by in order to extend some of Thompson's results about odd groups to groups with dihedral Sylow 2-subgroups. Definition If a group has trivial ''p'' core O''p''(''G''), then it is defined to be ''p''-constrained if the ''p''-core O''p''(''G'') contains its centralizer, or in other words if its generalized Fitting subgroup is a ''p''-group. More generally, if O''p''(''G'') is non-trivial, then ''G'' is called ''p''-constrained if ''G''/O''p''(''G'') is . All ''p''-solvable groups are ''p''-constrained. See also * ''p'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lower P-series
In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described by Otto Grün in . Various applications of these ideas include local criteria for ''p''-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index ''p''. Background The focal subgroup theorem relates several lines of investigation in finite group theory: normal subgroups of index a power of ''p'', the transfer homomorphism, and fusion of elements. Subgroups The following three normal subgroups of index a power of ''p'' are naturally defined, and arise as the smallest normal subgroups such that the quotient is (a certain kind of) ''p''-group. Formally, they are kernels of the reflection onto the refl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classification Of Finite Simple Groups
In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating groups, alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic groups, sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fitting Subgroup
In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup ''F'' of a finite group ''G'', named after Hans Fitting, is the unique largest normal nilpotent subgroup of ''G''. Intuitively, it represents the smallest subgroup which "controls" the structure of ''G'' when ''G'' is solvable. When ''G'' is not solvable, a similar role is played by the generalized Fitting subgroup ''F*'', which is generated by the Fitting subgroup and the components of ''G''. For an arbitrary (not necessarily finite) group ''G'', the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of ''G''. For infinite groups, the Fitting subgroup is not always nilpotent. The remainder of this article deals exclusively with finite groups. The Fitting subgroup The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of ''G'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sylow Subgroup
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number p, a ''p''-group is a group whose cardinality is a power of p; or equivalently, the order of each group element is some power of p. A Sylow ''p''-subgroup (sometimes ''p''-Sylow subgroup) of a finite group G is a maximal p-subgroup of G, i.e., a subgroup of G that is a ''p''-group and is not a proper subgroup of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p is sometimes written \text_p(G). The Sylow theorems assert a partial converse to Lagrange's theorem. Lagrange's theorem states that for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Profinite Group
In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists d\in\N such that every group in the system can be generated by d elements. Many theorems about finite groups can be readily generalised to profinite groups; examples are Lagrange's theorem and the Sylow theorems. To construct a profinite group one needs a system of finite groups and group homomorphisms between them. Without loss of generality, these homomorphisms can be assumed to be surjective, in which case the finite groups will appear as quotient groups of the resulting profinite group; in a sense, these quotients approximate the profin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]