Two-dimensional Critical Ising Model
   HOME
*





Two-dimensional Critical Ising Model
The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge c=\tfrac12. Correlation functions of the spin and energy operators are described by the (4, 3) minimal model. While the minimal model has been exactly solved, see also, e.g., the article on Ising critical exponents, the solution does not cover other observables such as connectivities of clusters. The minimal model Space of states and conformal dimensions The Kac table of the (4, 3) minimal model is: : \begin 2 & \frac & \frac & 0 \\ 1 & 0 & \frac & \frac \\ \hline & 1 & 2 & 3 \end This means that the space of states is generated by three primary states, which correspond to three primary fields or operators: : \begin \hline \text & \text & \text & \text \\ \hline (1,1) \text (3,2) & 0 & \mathbf & \text \\ (2,1) \text (2,2) & \frac & \sigma & \text \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Point (thermodynamics)
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. The most prominent example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas cannot be liquefied by pressure alone. At the critical point, defined by a ''critical temperature'' ''T''c and a ''critical pressure'' ''p''c, phase boundaries vanish. Other examples include the liquid–liquid critical points in mixtures, and the ferromagnet–paramagnet transition (Curie temperature) in the absence of an external magnetic field. Liquid–vapor critical point Overview For simplicity and clarity, the generic notion of ''critical point'' is best introduced by discussing a specific example, the vapor–liquid critical point. This was the first critical point to be discovered, and it is still the best known and most studied one. The figu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Conformal Block
In two-dimensional conformal field theory, Virasoro conformal blocks (named after Miguel Ángel Virasoro) are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identites. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory. Definition Definition from OPEs Using operator product expansions (OPEs), an N-point function on the sphere can be written as a combination of three-point structure constants, and universal quantities called N-point conformal blocks.P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Models
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models (when they are solvable) includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exactly Solvable Models
Exact may refer to: * Exaction, a concept in real property law * ''Ex'Act'', 2016 studio album by Exo * Schooner Exact, the ship which carried the founders of Seattle Companies * Exact (company), a Dutch software company * Exact Change, an American independent book publishing company * Exact Editions, a content management platform Mathematics * Exact differentials, in multivariate calculus * Exact algorithms, in computer science and operations research * Exact colorings, in graph theory * Exact couples, a general source of spectral sequences * Exact sequences, in homological algebra * Exact functor, a function which preserves exact sequences See also * *Exactor (other) *XACT (other) *EXACTO EXACTO, an acronym of "Extreme Accuracy Tasked Ordnance", is a sniper rifle firing smart bullets being developed for DARPA (Defense Advanced Research Projects Agency) by Lockheed Martin and Teledyne Scientific & Imaging in November 2008. The ...
, a sniper rifl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Potts Model
In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively. The model is named after Renfrey Potts, who described the model near the end of his 1951 Ph.D. thesis. The model was related to the "planar Potts" or " clock model", which was suggested to him by his advisor, Cyril Domb. The four-state Potts model is sometimes known as the Ashkin–Teller model, after Julius Ashkin and Edward Teller, who considered an equivalent model in 1943. The Potts model is related to, and generalized by, several other models, including the XY model, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Cluster Model
In statistical mechanics, probability theory, graph theory, etc. the random cluster model is a random graph that generalizes and unifies the Ising model, Potts model, and percolation model. It is used to study random combinatorial structures, electrical networks, etc. It is also referred to as the RC model or sometimes the FK representation after its founders Cees Fortuin and Piet Kasteleyn. Definition Let G = (V,E) be a graph, and \omega: E \to \ be a bond configuration on the graph that maps each edge to a value of either 0 or 1. We say that a bond is ''closed'' on edge e\in E if \omega(e)=0, and open if \omega(e)=1. If we let A(\omega) = \ be the set of open bonds, then an open cluster is any connected component in A(\omega). Note that an open cluster can be a single vertex (if that vertex is not incident to any open bonds). Suppose an edge is open independently with probability p and closed otherwise, then this is just the standard Bernoulli percolation process. The prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Fermion
In physics, a Dirac fermion is a spin-½ particle (a fermion) which is different from its antiparticle. The vast majority of fermions – perhaps all – fall under this category. Description In particle physics, all fermions in the standard model have distinct antiparticles (''perhaps'' excepting neutrinos) and hence are Dirac fermions. They are named after Paul Dirac, and can be modeled with the Dirac equation. A Dirac fermion is equivalent to two Weyl fermions. The counterpart to a Dirac fermion is a Majorana fermion, a particle that must be its own antiparticle. Dirac quasi-particles In condensed matter physics, low-energy excitations in graphene and topological insulators, among others, are fermionic quasiparticles described by a pseudo-relativistic Dirac equation. See also * Dirac spinor, a wavefunction-like description of a Dirac fermion * Dirac–Kähler fermion, a geometric formulation of Dirac fermions * Majorana fermion, an alternate category of fermion, possibly de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Product Expansion
In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question. In practical calculations, such as those needed for scattering amplitudes in various collider experiments, the operator product expansion is used in QCD sum rules to combine results from both perturbative and non-perturbative (condensate) calculations. 2D Euclidean quantum field theory In 2D Euclidean field theory, the operator product expansion is a Laurent series expansion associated to two operators. A Laurent series is a generalization of the Taylor series in that finitely many powers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Virasoro Conformal Block
In two-dimensional conformal field theory, Virasoro conformal blocks (named after Miguel Ángel Virasoro) are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identites. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory. Definition Definition from OPEs Using operator product expansions (OPEs), an N-point function on the sphere can be written as a combination of three-point structure constants, and universal quantities called N-point conformal blocks.P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Functions
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ising Model
The Ising model () (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition. The Ising model was invented by the physicist , who gave it as a prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]