Thomas Algorithm
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for ''n'' unknowns may be written as :a_i x_ + b_i x_i + c_i x_ = d_i, where a_1 = 0 and c_n = 0. : \begin b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_ \\ 0 & & & a_n & b_n \end \begin x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end = \begin d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end . For such systems, the solution can be obtained in O(n) operations instead of O(n^3) required by Gaussian elimination. A first sweep eliminates the a_i's, and then an (abbreviated) backward substitution produces the solution. Examples of such matrices commonly aris ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numerical Linear Algebra
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible. Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social scienc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Pivoting
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this element is called pivoting. Pivoting may be followed by an interchange of rows or columns to bring the pivot to a fixed position and allow the algorithm to proceed successfully, and possibly to reduce round-off error. It is often used for verifying row echelon form. Pivoting might be thought of as swapping or sorting rows or columns in a matrix, and thus it can be represented as multiplication by permutation matrices. However, algorithms rarely move the matrix elements because this would cost too much time; instead, they just keep track of the permutations. Overall, pivoting adds more operations to the computational cost of an algorithm. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfio Quarteroni
Alfio Quarteroni (born 30 May 1952) is an Italian mathematician. He is Professor Emeritus at the Politecnico of Milan (Italy), and Professor Emeritus at the EPFL (Swiss Federal Institute of Technology). He has been the director of the Chair of Modelling and Scientific Computing at the EPFL (Swiss Federal Institute of Technology), Lausanne (Switzerland), from 1998 until 2017. He is the founder (and first director) of MOX at Politecnico of Milan (2002) anMATHICSEat EPFL, Lausanne (2010). He is co-founder (and President) oMOXOFF a spin-off company at Politecnico of Milan (2010). He is member of the Italian Academy of Science (Accademia Nazionale dei Lincei), the European Academy of Science, the Academia Europaea(Academy of Europe), the Lisbon Academy of Sciences, the Istituto Lombardo Accademia di Scienze e Lettere and the Italian Academy of Engineering and Technology. He is author of 26 books (some of them translated into up to 7 languages), editor of 8 books, author of about ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Equation Discretized Into Block Tridiagonal
In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator. The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own right as a topic in discrete mathematics. On a two-dimensional rectangular grid Using the finite difference numerical method to discretize the 2-dimensional Poisson equation (assuming a uniform spatial discretization, \Delta x=\Delta y) on an grid gives the following formula: ( ^2 u )_ = \frac (u_ + u_ + u_ + u_ - 4 u_) = g_ where 2 \le i \le m-1 and 2 \le j \le n-1 . The preferred arrangement of the solution vector is to use natural ordering which, prior to removing boundary elements, would look like: \mathbf = \begin u_ , u_ , \ldots , u_ , u_ , u_ , \ldots , u_ , \ldots , u_ \end^\mathsf This will result in an linear system: A\mathb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Block Matrix
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block. : \left \begin a_ & a_ & a_ & b_ \\ a_ & a_ & a_ & b_ \\ \hline c_ & c_ & c_ & d \end \right Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned. This notion can be made more precise for an n by m matrix M by partitioning n into a collection \text, and then partitioning m into a collection \text. The original m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sherman–Morrison Formula
In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a "rank-1 update" to a matrix whose inverse has previously been computed. That is, given an invertible matrix A and the outer product u v^\textsf of vectors u and v, the formula cheaply computes an updated matrix inverse \left(A + uv^\textsf\right)\vphantom)^. The Sherman–Morrison formula is a special case of the Woodbury formula. Though named after Sherman and Morrison, it appeared already in earlier publications. Statement Suppose A\in\mathbb^ is an invertible square matrix and u,v\in\mathbb^n are column vectors. Then A + uv^\textsf is invertible if and only if 1 + v^\textsf A^u \neq 0. In this case, :\left(A + uv^\textsf\right)^ = A^ - . Here, uv^\textsf is the outer product of two vectors u and v. The general form shown here is the one published by Bartlett. Proof (\Leftarrow) To prove that the backward direction 1 + v^\textsfA^u \neq 0 \Ri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Periodic Boundary Conditions
Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen for approximating a large (infinite) system by using a small part called a ''unit cell''. PBCs are often used in computer simulations and mathematical models. The topology of two-dimensional PBC is equal to that of a ''world map'' of some video games; the geometry of the unit cell satisfies perfect two-dimensional tiling, and when an object passes through one side of the unit cell, it re-appears on the opposite side with the same velocity. In topological terms, the space made by two-dimensional PBCs can be thought of as being mapped onto a torus (Compactification (mathematics), compactification). The large systems approximated by PBCs consist of an infinite number of unit cells. In computer simulations, one of these is the original simulation box, and others are copies called ''images''. During the simulation, only the properties of the original simulation box need to be recorded and propaga ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
C (programming Language)
C (''pronounced'' '' – like the letter c'') is a general-purpose programming language. It was created in the 1970s by Dennis Ritchie and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted Central processing unit, CPUs. It has found lasting use in operating systems code (especially in Kernel (operating system), kernels), device drivers, and protocol stacks, but its use in application software has been decreasing. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B (programming language), B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the most widely used programming langu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Positive Definite
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number \mathbf^\mathsf M \mathbf is positive for every nonzero real column vector \mathbf, where \mathbf^\mathsf is the row vector transpose of \mathbf. More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number \mathbf^* M \mathbf is positive for every nonzero complex column vector \mathbf, where \mathbf^* denotes the conjugate transpose of \mathbf. Positive semi-definite matrices are defined similarly, except that the scalars \mathbf^\mathsf M \mathbf and \mathbf^* M \mathbf are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called ''indefinite''. Some authors use more general definitions of definiteness, permitting the matrices to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Llewellyn Thomas
Llewellyn Hilleth Thomas (21 October 1903 – 20 April 1992) was a British physicist and applied mathematician. He is best known for his contributions to atomic and molecular physics and solid-state physics. His key achievements include calculating relativistic effects on the spin-orbit interaction in a hydrogenic atom ( Thomas precession), creating an approximate theory of N-body quantum systems ( Thomas-Fermi theory), and devising an efficient method for solving tridiagonal system of linear equations ( Thomas algorithm). Life and education Born in London, he studied at Cambridge University, receiving his BA, PhD, and MA degrees in 1924, 1927 and 1928 respectively. While on a Traveling Fellowship for the academic year 1925–1926 at Bohr's Institute in Copenhagen, he proposed Thomas precession in 1926, to explain the difference between predictions made by spin-orbit coupling theory and experimental observations. In 1929 he obtained a job as a professor of physics at the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagonally Dominant
In mathematics, a square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the diagonal entry in a row is greater than or equal to the sum of the magnitudes of all the other (off-diagonal) entries in that row. More precisely, the matrix A is diagonally dominant if :, a_, \geq \sum_ , a_, \ \ \forall \ i where a_ denotes the entry in the ith row and jth column. This definition uses a weak inequality, and is therefore sometimes called ''weak diagonal dominance''. If a strict inequality (>) is used, this is called ''strict diagonal dominance''. The unqualified term ''diagonal dominance'' can mean both strict and weak diagonal dominance, depending on the context. Variations The definition in the first paragraph sums entries across each row. It is therefore sometimes called ''row diagonal dominance''. If one changes the definition to sum down each column, this is called ''column diagonal dominance''. Any strictly diagonally dominant matr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numerical Stability
In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context: one important context is numerical linear algebra, and another is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues. On the other hand, in numerical algorithms for differential equations the concern is the growth of round-off errors and/or small fluctuations in initial data which might cause a large deviation of final answer from the exact solution. Some numerical algorithms may damp out the small fluctuations (errors) in the input data; others might magnify such errors. Calculations that can be proven not to magnify approximation errors are called ''numerically stable''. One ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |