Taubes's Gromov Invariant
   HOME





Taubes's Gromov Invariant
In mathematics, the Gromov invariant of Clifford Taubes counts embedded (possibly disconnected) pseudoholomorphic curves in a symplectic 4-manifold, where the curves are holomorphic with respect to an auxiliary compatible almost complex structure. (Multiple covers of 2-tori with self-intersection 0 are also counted.) Taubes proved the information contained in this invariant is equivalent to invariants derived from the Seiberg–Witten equations in a series of four long papers. Much of the analytical complexity connected to this invariant comes from properly counting multiply covered pseudoholomorphic curves so that the result is invariant of the choice of almost complex structure. The crux is a topologically defined index for pseudoholomorphic curves which controls embeddedness and bounds the Fredholm index. Embedded contact homology is an extension due to Michael Hutchings of this work to noncompact four-manifolds of the form Y \times \R, where ''Y'' is a compact contac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Clifford Taubes
Clifford Henry Taubes (born February 21, 1954) is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes. Early career Taubes received his B.A. from Cornell University in 1975 and his Ph.D. in physics in 1980 from Harvard University under the direction of Arthur Jaffe, having proven results collected in about the existence of solutions to the Landau–Ginzburg vortex equations and the Bogomol'nyi monopole equations. Soon, he began applying his gauge-theoretic expertise to pure mathematics. His work on the boundary of the moduli space of solutions to the Yang-Mills equations was used by Simon Donaldson in his proof of Donaldson's theorem on diagonizability of intersection forms. He proved in that R4 has an uncountable number of smooth structures (see also exotic R4), and (with Raoul Bott in ) proved Witten's rigidity theorem on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Pseudoholomorphic Curve
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map, from a Riemann surface into an almost complex manifold, that satisfies the Cauchy–Riemann equations. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory. Definition Let X be an almost complex manifold with almost complex structure J. Let C be a smooth Riemann surface (also called a complex curve) with complex structure j. A pseudoholomorphic curve in X is a map f : C \to X that satisfies the Cauchy–Riemann equation :\bar \partial_ f := \frac(df + J \circ df \circ j) = 0. Since J^2 = -1, this condition is equivalent to :J \circ df = df \circ j, which simply means that the differential df is complex-linear, that is, J maps each tangent space :T_xf(C)\subseteq T_x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Symplectic Geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Hermann Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin ''com-plexus'', meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek ''sym-plektikos'' (συμπλεκτικός); in both cases the stem comes from the Indo-European root *pleḱ- The name reflects the deep connections between complex and symplectic structures. By Darboux's theorem, symplectic manifolds are isomorphic to the standard symplectic vector space locally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


4-manifold
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic). 4-manifolds are important in physics because in general relativity, spacetime is modeled as a pseudo-Riemannian 4-manifold. Topological 4-manifolds The homotopy type of a simply connected compact 4-manifold only depends on the intersection form on the middle dimensional homology. A famous theorem of implies that the homeomorphism type of the manifold only depends on this intersection form, and on a \Z/2\Z invariant called the Kirby–Siebenmann invariant, and moreover that every combination of unimodular form and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Almost Complex Structure
In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry. The concept is due to Charles Ehresmann and Heinz Hopf in the 1940s. Formal definition Let ''M'' be a smooth manifold. An almost complex structure ''J'' on ''M'' is a linear complex structure (that is, a linear map which squares to −1) on each tangent space of the manifold, which varies smoothly on the manifold. In other words, we have a smooth tensor field ''J'' of degree such that J^2=-1 when regarded as a vector bundle isomorphism J\colon TM\to TM on the tangent bundle. A manifold equipped with an almost complex structure is called an almost complex manifold. If ''M'' admits an almost complex structure, it must be even-dimensional. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Fredholm Index
In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator ''T'' : ''X'' → ''Y'' between two Banach spaces with finite-dimensional kernel \ker T and finite-dimensional (algebraic) cokernel \operatornameT = Y/\operatornameT, and with closed range \operatornameT. The last condition is actually redundant. The ''index'' of a Fredholm operator is the integer : \operatornameT := \dim \ker T - \operatorname\operatornameT or in other words, : \operatornameT := \dim \ker T - \operatorname\operatornameT. Properties Intuitively, Fredholm operators are those operators that are invertible "if finite-dimensional effects are ignored." The formally correct statement follows. A bounded operator T: X \to Y between Banach spaces X and Y is Fredholm if and only if it is invertible modulo compact operators, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Floer Homology
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is an invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called symplectic Floer homology, in his 1988 proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds. Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Michael Hutchings (mathematician)
Michael Lounsbery Hutchings is an American mathematician, a professor of mathematics at the University of California, Berkeley. He is known for proving the double bubble conjecture on the shape of two-chambered soap bubbles, and for his work on circle-valued Morse theory and on embedded contact homology, which he defined. Career As an undergraduate student at Harvard University, Hutchings did an REU project with Frank Morgan at Williams College that began his interest in the mathematics of soap bubbles. He finished his undergraduate studies in 1993, and stayed at Harvard for graduate school, earning his Ph.D. in 1998 under the supervision of Clifford Taubes. After postdoctoral and visiting positions at Stanford University, the Max Planck Institute for Mathematics in Bonn, Germany, and the Institute for Advanced Study in Princeton, New Jersey, he joined the UC Berkeley faculty in 2001. His work on circle-valued Morse theory (partly in collaboration with Yi-Jen Lee) studies tor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Contact Manifold
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution (differential geometry), distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'integrable system, complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem (differential topology), Frobenius theorem. Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of clas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

3-manifold
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Principles Definition A topological space M is a 3-manifold if it is a second-countable Hausdorff space and if every point in M has a neighbourhood (mathematics), neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, Piecewise linear manifold, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]