Suslin Conjecture
   HOME
*





Suslin Conjecture
In mathematics, Suslin's problem is a question about totally ordered sets posed by and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC: showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent. (Suslin is also sometimes written with the French transliteration as , from the Cyrillic .) Formulation Suslin's problem asks: Given a non-empty totally ordered set ''R'' with the four properties # ''R'' does not have a least nor a greatest element; # the order on ''R'' is dense (between any two distinct elements there is another); # the order on ''R'' is complete, in the sense that every non-empty bounded subset has a supremum and an infimum; and # every collection of mutually disjoint non-empty open intervals in ''R'' is countable (this is the countable chain condition for the order topology of ''R''), is ''R'' necessarily order-isomorphic to the real line R? If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and subtraction, especially involving negative numbers. In advanced mathematics, the number line can be called as a real line or real number line, formally defined as the set (mathematics), set of all real numbers, viewed as a geometry, geometric space (mathematics), space, namely the Euclidean space of dimension one. It can be thought of as a vector space (or affine space), a metric space, a topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diamond Principle
In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe () and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility () implies the existence of a Suslin tree. Definitions The diamond principle says that there exists a , a family of sets for such that for any subset of ω1 the set of with is stationary in . There are several equivalent forms of the diamond principle. One states that there is a countable collection of subsets of for each countable ordinal such that for any subset of there is a stationary subset of such that for all in we have and . Another equivalent form states that there exist sets for such that for any subset of there is at least one infinite with . More generally, for a given cardinal number and a stationary set , the statement (some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ronald Jensen
Ronald Björn Jensen (born April 1, 1936) is an American mathematician who lives in Germany, primarily known for his work in mathematical logic and set theory. Career Jensen completed a BA in economics at American University in 1959, and a Ph.D. in mathematics at the University of Bonn in 1964. His supervisor was Gisbert Hasenjaeger. Jensen taught at Rockefeller University, 1969–71, and the University of California, Berkeley, 1971–73. The balance of his academic career was spent in Europe at the University of Bonn, the University of Oslo, the University of Freiburg, the University of Oxford, and the Humboldt-Universität zu Berlin, from which he retired in 2001. He now resides in Berlin. Jensen was honored by the Association for Symbolic Logic as the first Gödel Lecturer in 1990. In 2015, the European Set Theory Society awarded him and John R. Steel the Hausdorff Medal for their paper "K without the measurable". Results Jensen's better-known results include the: * Axiomatic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Suslin Algebra
In mathematics, a Suslin algebra is a Boolean algebra that is complete, atomless, countably distributive, and satisfies the countable chain condition. They are named after Mikhail Yakovlevich Suslin. The existence of Suslin algebras is independent of the axioms of ZFC, and is equivalent to the existence of Suslin trees or Suslin lines. See also Andrei Suslin Andrei Suslin (russian: Андре́й Алекса́ндрович Су́слин, sometimes transliterated Souslin) was a Russian mathematician who contributed to algebraic K-theory and its connections with algebraic geometry. He was a Trustee ... References {{algebra-stub Boolean algebra Forcing (mathematics) Independence results ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Suslin Tree
In mathematics, a Suslin tree is a tree of height ω1 such that every branch and every antichain is at most countable. They are named after Mikhail Yakovlevich Suslin. Every Suslin tree is an Aronszajn tree. The existence of a Suslin tree is independent of ZFC, and is equivalent to the existence of a Suslin line (shown by ) or a Suslin algebra. The diamond principle, a consequence of V=L, implies that there is a Suslin tree, and Martin's axiom MA(ℵ1) implies that there are no Suslin trees. More generally, for any infinite cardinal κ, a κ-Suslin tree is a tree of height κ such that every branch and antichain has cardinality less than κ. In particular a Suslin tree is the same as a ω1-Suslin tree. showed that if V=L then there is a κ-Suslin tree for every infinite successor cardinal κ. Whether the Generalized Continuum Hypothesis implies the existence of an ℵ2-Suslin tree, is a longstanding open problem. See also * Glossary of set theory * Kurepa tree * List of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal \kappa: # \kappa is a regular cardinal. # If \kappa = \sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. # The

picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antichain
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its width. By Dilworth's theorem, this also equals the minimum number of chains (totally ordered subsets) into which the set can be partitioned. Dually, the height of the partially ordered set (the length of its longest chain) equals by Mirsky's theorem the minimum number of antichains into which the set can be partitioned. The family of all antichains in a finite partially ordered set can be given join and meet operations, making them into a distributive lattice. For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called Sperner families and their lattice is a free distributive lattice, with a Dedekind number of elements. More generally, counting the number of antichains of a finite pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tree (set Theory)
In set theory, a tree is a partially ordered set (''T'', <) such that for each ''t'' ∈ ''T'', the set is by the relation <. Frequently trees are assumed to have only one root (i.e. ), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.


Definition

A tree is a (poset) (''T'', <) such that for each ''t'' ∈ ''T'', the set is by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]