HOME
*





Schwarz–Ahlfors–Pick Theorem
In mathematics, the Schwarz–Ahlfors–Pick theorem is an extension of the Schwarz lemma for hyperbolic geometry, such as the Poincaré half-plane model. The Schwarz–Pick lemma states that every holomorphic function from the unit disk ''U'' to itself, or from the upper half-plane ''H'' to itself, will not increase the Poincaré distance between points. The unit disk ''U'' with the Poincaré metric has negative Gaussian curvature −1. In 1938, Lars Ahlfors generalised the lemma to maps from the unit disk to other negatively curved surfaces: Theorem ( Schwarz– Ahlfors– Pick). Let ''U'' be the unit disk with Poincaré metric \rho; let ''S'' be a Riemann surface endowed with a Hermitian metric \sigma whose Gaussian curvature is ≤ −1; let f:U\rightarrow S be a holomorphic function. Then :\sigma(f(z_1),f(z_2)) \leq \rho(z_1,z_2) for all z_1,z_2 \in U. A generalization of this theorem was proved by Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermann Schwarz
Karl Hermann Amandus Schwarz (; 25 January 1843 – 30 November 1921) was a German mathematician, known for his work in complex analysis. Life Schwarz was born in Hermsdorf, Silesia (now Jerzmanowa, Poland). In 1868 he married Marie Kummer, who was the daughter to the mathematician Ernst Eduard Kummer and Ottilie née Mendelssohn (a daughter of Nathan Mendelssohn's and granddaughter of Moses Mendelssohn). Schwarz and Kummer had six children, including his daughter Emily Schwarz. Schwarz originally studied chemistry in Berlin but Ernst Eduard Kummer and Karl Theodor Wilhelm Weierstrass persuaded him to change to mathematics. He received his Ph.D. from the Universität Berlin in 1864 and was advised by Kummer and Weierstrass. Between 1867 and 1869 he worked at the University of Halle, then at the Swiss Federal Polytechnic. From 1875 he worked at Göttingen University, dealing with the subjects of complex analysis, differential geometry and the calculus of variations. He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surfaces
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation. Yau is considered one of the major contributors to the development of modern differential geometry and geometric analysis. The impact of Yau's work can be seen in the mathematical and physical fields of differential geometry, partial differential equations, convex geometry, algebraic geometry, enumerative geometry, mirror symmetry, general relativity, and string theory, while his work has also touched upon applie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Metric
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure ( U(n) structure) on the manifold. By dropping this condition, we get an almost Hermitian manifold. On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure) that depends only on the chosen metric and the almost complex structure. This form is always non-degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an almost Kähler structure. If both the al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Georg Alexander Pick
Georg Alexander Pick (10 August 1859 – 26 July 1942) was an Austrian Jewish mathematician who was murdered during The Holocaust. He was born in Vienna to Josefa Schleisinger and Adolf Josef Pick and died at Concentration camp Theresienstadt, Theresienstadt concentration camp. Today he is best known for Pick's theorem for determining the area of lattice polygons. He published it in an article in 1899; it was popularized when Hugo Dyonizy Steinhaus included it in the 1969 edition of Mathematical Snapshots. Pick studied at the University of Vienna and defended his Ph.D. in 1880 under Leo Königsberger and Emil Weyr. After receiving his doctorate he was appointed an assistant to Ernst Mach at the Charles-Ferdinand University in Prague. He became a lecturer there in 1881. He took a leave from the university in 1884 during which he worked with Felix Klein at the University of Leipzig. Other than that year, he remained in Prague until his retirement in 1927 at which time he returned to V ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lars Ahlfors
Lars Valerian Ahlfors (18 April 1907 – 11 October 1996) was a Finnish mathematician, remembered for his work in the field of Riemann surfaces and his text on complex analysis. Background Ahlfors was born in Helsinki, Finland. His mother, Sievä Helander, died at his birth. His father, Axel Ahlfors, was a professor of engineering at the Helsinki University of Technology. The Ahlfors family was Swedish-speaking, so he first attended the private school Nya svenska samskolan where all classes were taught in Swedish. Ahlfors studied at University of Helsinki from 1924, graduating in 1928 having studied under Ernst Lindelöf and Rolf Nevanlinna. He assisted Nevanlinna in 1929 with his work on Denjoy's conjecture on the number of asymptotic values of an entire function. In 1929 Ahlfors published the first proof of this conjecture, now known as the Denjoy–Carleman–Ahlfors theorem. It states that the number of asymptotic values approached by an entire function of order ρ along c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarz Lemma
In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than deeper theorems, such as the Riemann mapping theorem, which it helps to prove. It is, however, one of the simplest results capturing the rigidity of holomorphic functions. Statement Let \mathbf = \ be the open unit disk in the complex plane \mathbb centered at the origin, and let f : \mathbf\rightarrow \mathbb be a holomorphic map such that f(0) = 0 and , f(z), \leq 1 on \mathbf. Then , f(z), \leq , z, for all z \in \mathbf, and , f'(0), \leq 1. Moreover, if , f(z), = , z, for some non-zero z or , f'(0), = 1, then f(z) = az for some a \in \mathbb with , a, = 1.Theorem 5.34 in Proof The proof is a straightforward application of the maximum modulus principle on the function :g(z) = \begin \frac\, & \mbox z \neq 0 \\ f'(0) & \mbox z = 0, \end which is holomorphic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, depending only on distances that are measured “within” or along the surface, not on the way it is isometrically embedded in Euclidean space. This is the content of the '' Theorema egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the '' Theorema egregium'' in 1827. Informal definition At any point on a surface, we can find a normal vector that is at right angles to the surface; planes containing t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the  axis is oriented vertically, the "upper half-plane" corresponds to the region above the  axis and thus complex numbers for which  > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by   0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]