Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Replication (statistics)
In engineering, science, and statistics, replication is the process of repeating a study or experiment under the same or similar conditions. It is a crucial step to test the original claim and confirm or reject the accuracy of results as well as for identifying and correcting the flaws in the original experiment. ASTM, in standard E1847, defines replication as "... the repetition of the set of all the treatment combinations to be compared in an experiment. Each of the repetitions is called a ''replicate''." For a full factorial design, replicates are multiple experimental runs with the same factor levels. You can replicate combinations of factor levels, groups of factor level combinations, or even entire designs. For instance, consider a scenario with three factors, each having two levels, and an experiment that tests every possible combination of these levels (a full factorial design). One complete replication of this design would comprise 8 runs (2^3). The design can be executed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Downsampling
In digital signal processing, downsampling, compression, and decimation are terms associated with the process of ''resampling'' in a multi-rate digital signal processing system. Both ''downsampling'' and ''decimation'' can be synonymous with ''compression'', or they can describe an entire process of bandwidth reduction ( filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a ''signal'' or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph). ''Decimation'' is a term that historically means the '' removal of every tenth one''. But in signal processing, ''decimation by a factor of 10'' actually means ''keeping'' only every tenth sample. This factor multiplies the sampling interval or, equivalently, divides the sampling rate. For example, if compact disc audio at 44,100 samples/second is ''decimated'' by a factor o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chroma Subsampling
Chroma subsampling is the practice of encoding images by implementing less resolution for Chrominance, chroma information than for luma (video), luma information, taking advantage of the human visual system's lower acuity for color differences than for luminance. It is used in many video and still image encoding schemesboth analog and digitalincluding in JPEG encoding. Rationale Digital signals are often compressed to reduce file size and save transmission time. Since the human visual system is much more sensitive to variations in brightness than color, a video system can be optimized by devoting more bandwidth to the luma (video), luma component (usually denoted Y'), than to the color difference components Cb and Cr. In compressed images, for example, the 4:2:2 Y'CbCr scheme requires two-thirds the bandwidth of non-subsampled "4:4:4" R'G'B'. This reduction results in almost no visual difference as perceived by the viewer. How subsampling works The Visual perception, human vi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |