Stone–von Neumann Theorem
In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann. Representation issues of the commutation relations In quantum mechanics, physical observables are represented mathematically by linear operators on Hilbert spaces. For a single particle moving on the real line \mathbb, there are two important observables: position and momentum. In the Schrödinger representation quantum description of such a particle, the position operator and momentum operator p are respectively given by \begin[] [x \psi](x_0) &= x_0 \psi(x_0) \\[] [p \psi](x_0) &= - i \hbar \frac(x_0) \end on the domain V of infinitely differentiable functions of compact support on \mathbb. Assume \hbar to be a fixed ''non-zero'' real number—in quantum theory \hbar is the reduced Planck ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Position Operator
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. In one dimension, if by the symbol , x \rangle we denote the unitary eigenvector of the position operator corresponding to the eigenvalue x, then, , x \rangle represents the state of the particle in which we know with certainty to find the particle itself at position x. Therefore, denoting the position operator by the symbol X we can write X, x\rangle = x , x\rangle, for every real position x. One possible realization of the unitary state with position x is the Dirac delta (function) distribution centered at the position x, often denoted by \delta_x. In quantum mechanics, the ordered (continuous) family of all Dirac distributions, i.e. the family \delta = (\delta_x)_, is called ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Baker–Campbell–Hausdorff Formula
In mathematics, the Baker–Campbell–Hausdorff formula gives the value of Z that solves the equation e^X e^Y = e^Z for possibly noncommutative and in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield an expression for Z in Lie algebraic terms, that is, as a formal series (not necessarily convergent) in X and Y and iterated commutators thereof. The first few terms of this series are: Z = X + Y + \frac ,Y+ \frac ,[X,Y + \frac [Y,[Y,X + \cdots\,, where "\cdots" indicates terms involving higher Commutator#Identities_(ring_theory)">commutators of X and Y. If X and Y are sufficiently small elements of the Lie algebra \mathfrak g of a Lie group G, the series is convergent. Meanwhile, every element g sufficiently close to the identity in G can be expressed as g = e^X for a small X in \mathfrak g. Thus, we can say that ''near the identity'' the group multiplication in G—written as e^X e^Y = e^Z—can be expressed in purely Lie alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Calculus
In mathematics, a functional calculus is a theory allowing one to apply mathematical functions to mathematical operators. It is now a branch (more accurately, several related areas) of the field of functional analysis, connected with spectral theory. (Historically, the term was also used synonymously with calculus of variations; this usage is obsolete, except for functional derivative. Sometimes it is used in relation to types of functional equations, or in logic for systems of predicate calculus.) If f is a function, say a numerical function of a real number, and M is an operator, there is no particular reason why the expression f(M) should make sense. If it does, then we are no longer using f on its original function domain. In the tradition of operational calculus, algebraic expressions in operators are handled irrespective of their meaning. This passes nearly unnoticed if we talk about 'squaring a matrix', though, which is the case of f(x) = x^2 and M an n\times ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stone's Theorem On One-parameter Unitary Groups
In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space \mathcal and one-parameter families :(U_)_ of unitary operators that are strongly continuous, i.e., :\forall t_0 \in \R, \psi \in \mathcal: \qquad \lim_ U_t(\psi) = U_(\psi), and are homomorphisms, i.e., :\forall s,t \in \R : \qquad U_ = U_t U_s. Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups. The theorem was proved by , and showed that the requirement that (U_t)_ be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable. This is an impressive result, as it allows one to define the derivative of the mapping t \mapsto U_t, which is only supposed to be continuous. It is also related to the theory of Lie groups and Lie algebras. Formal statem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Clock And Shift Matrices
''The'' is a grammatical article in English, denoting nouns that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archaic pronoun ''thee'') ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Joseph Sylvester
James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership role in American mathematics in the later half of the 19th century as a professor at the Johns Hopkins University and as founder of the '' American Journal of Mathematics''. At his death, he was a professor at Oxford University. Biography James Joseph was born in London on 3 September 1814, the son of Abraham Joseph, a Jewish merchant. James later adopted the surname ''Sylvester'' when his older brother did so upon emigration to the United States. At the age of 14, Sylvester was a student of Augustus De Morgan at the University of London (now University College London). His family withdrew him from the university after he was accused of stabbing a fellow student with a knife. Subsequently, he attended the Liverpool Royal Institutio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normed Algebra
In mathematics, a normed algebra ''A'' is an algebra over a field which has a sub-multiplicative norm: : \forall x,y\in A\qquad \, xy\, \le\, x\, \, y\, . Some authors require it to have a multiplicative identity 1 such that ║1║ = 1. See also * Banach algebra * Composition algebra * Division algebra * Gelfand–Mazur theorem In operator theory, the Gelfand–Mazur theorem is a theorem named after Israel Gelfand and Stanisław Mazur which states that a Banach algebra with unit over the complex numbers in which every nonzero element is invertible is isometrically isomorp ... * Hurwitz's theorem (composition algebras) External reading * Algebras {{algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmut Wielandt
__NOTOC__ Helmut Wielandt (19 December 1910 – 14 February 2001) was a German mathematician who worked on permutation groups. He was born in Niedereggenen, Lörrach, Germany. He gave a plenary lecture ''Entwicklungslinien in der Strukturtheorie der endlichen Gruppen'' (Lines of Development in the Structure Theory of Finite Groups) at the International Congress of Mathematicians (ICM) in 1958 at Edinburgh and was an Invited Speaker with talk ''Bedingungen für die Konjugiertheit von Untergruppen endlicher Gruppen'' (Conditions for the Conjugacy of Finite Groups) at the ICM in 1962 in Stockholm. Among his work in Algebra is an elegant proof of the Sylow Theorems (replacing an older cumbersome proof involving double cosets) that is in the standard textbooks on Abstract Algebra, i.e. Group Theory. See also * Collatz–Wielandt formula * Wielandt theorem In mathematics, the Wielandt theorem characterizes the gamma function, defined for all complex numbers z for which \mathrm\,z ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A linear operator between normed spaces is continuous if and only if it is bounded. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite-dimensional
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |