HOME



picture info

Standard Score
In statistics, the standard score or ''z''-score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores. It is calculated by subtracting the population mean from an individual raw score and then dividing the difference by the Statistical population, population standard deviation. This process of converting a raw score into a standard score is called standardizing or normalizing (however, "normalizing" can refer to many types of ratios; see ''Normalization (statistics), Normalization'' for more). Standard scores are most commonly called ''z''-scores; the two terms may be used interchangeably, as they are in this article. Other equivalent terms in use include z-value, z-statistic, normal score, standardized variable and pull in high energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Normal Distribution
''The'' is a grammatical article in English, denoting nouns that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archaic pronoun ''thee' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ACT (test)
The ACT (; originally an abbreviation of American College Testing) Name changed in 1996. is a standardized test used for college admissions in the United States. It is administered by ACT, Inc., a for-profit organization of the same name. The ACT test covers four academic skill areas: English, mathematics, reading, and scientific reasoning. It also offers an optional direct writing test. It is accepted by many four-year colleges and universities in the United States as well as more than 225 universities outside of the U.S. The main four ACT test sections are individually scored on a scale of 1–36, and a composite score (the rounded whole number average of the four sections) is provided. The ACT was first introduced in November 1959 by University of Iowa professor Everett Franklin Lindquist as a competitor to the Scholastic Aptitude Test (SAT). The ACT originally consisted of four tests: English, Mathematics, Social Studies, and Natural Sciences. In 1989, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Standard Normal Deviate
Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object that bears a defined relationship to a unit of measure used for calibration of measuring devices * Standard (timber unit), an obsolete measure of timber used in trade * Breed standard (also called bench standard), in animal fancy and animal husbandry * BioCompute Standard, a standard for next generation sequencing * ''De facto'' standard, product or system with market dominance * Gold standard, a monetary system based on gold; also used metaphorically for the best of several options, against which the others are measured * Internet Standard, a specification ratified as an open standard by the Internet Engineering Task Force * Learning standards, standards applied to education content * Standard displacement, a naval term describing the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Omega Ratio
The Omega ratio is a risk-return performance measure of an investment asset, portfolio, or strategy. It was devised by Con Keating and William F. Shadwick in 2002 and is defined as the probability weighted ratio of gains versus losses for some threshold return target. The ratio is an alternative for the widely used Sharpe ratio and is based on information the Sharpe ratio discards. Omega is calculated by creating a partition in the cumulative return distribution in order to create an area of losses and an area for gains relative to this threshold. The ratio is calculated as: : \Omega(\theta) = \frac, where F is the cumulative probability distribution function of the returns and \theta is the target return threshold defining what is considered a gain versus a loss. A larger ratio indicates that the asset provides more gains relative to losses for some threshold \theta and so would be preferred by an investor. When \theta is set to zero the gain-loss-ratio by Bernardo and Led ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mahalanobis Distance
The Mahalanobis distance is a distance measure, measure of the distance between a point P and a probability distribution D, introduced by Prasanta Chandra Mahalanobis, P. C. Mahalanobis in 1936. The mathematical details of Mahalanobis distance first appeared in the ''Journal of The Asiatic Society of Bengal'' in 1936. Mahalanobis's definition was prompted by the problem of similarity measure, identifying the similarities of skulls based on measurements (the earliest work related to similarities of skulls are from 1922 and another later work is from 1927). Raj Chandra Bose, R.C. Bose later obtained the sampling distribution of Mahalanobis distance, under the assumption of equal dispersion. It is a multivariate generalization of the square of the standard score z=(x- \mu)/\sigma: how many standard deviations away P is from the mean of D. This distance is zero for P at the mean of D and grows as P moves away from the mean along each principal component axis. If each of these axes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error Function
In mathematics, the error function (also called the Gauss error function), often denoted by , is a function \mathrm: \mathbb \to \mathbb defined as: \operatorname z = \frac\int_0^z e^\,\mathrm dt. The integral here is a complex Contour integration, contour integral which is path-independent because \exp(-t^2) is Holomorphic function, holomorphic on the whole complex plane \mathbb. In many applications, the function argument is a real number, in which case the function value is also real. In some old texts, the error function is defined without the factor of \frac. This nonelementary integral is a sigmoid function, sigmoid function that occurs often in probability, statistics, and partial differential equations. In statistics, for non-negative real values of , the error function has the following interpretation: for a real random variable that is normal distribution, normally distributed with mean 0 and standard deviation \frac, is the probability that falls in the range . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficient Of Variation
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is defined as the ratio of the standard deviation \sigma to the mean \mu (or its absolute value, , and often expressed as a percentage ("%RSD"). The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R, by economists and investors in economic models, in epidemiology, and in psychology/neuroscience. Definition The coefficient of variation (CV) is defined as the ratio of the standard deviation \sigma to the mean \mu, CV = \frac. It shows the extent of variability in relation to the mean of the population. The coefficien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sample Mean
The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales. The sample mean is used as an estimator for the population mean, the average value in the entire population, where the estimate is more likely to be close to the population mean if the sample is large and representative. The reliability of the sample mean is estimated using the standard error, which in turn is calculated using the variance of the sample. If the sample is random, the standard error falls with th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expected Value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean, mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would expect to get in reality. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by Integral, integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function (mathematics), function in which * the Domain of a function, domain is the set of possible Outcome (probability), outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the Range of a function, range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the Real number, real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Statistics
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques that are commonly used in statistics include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure theory. Introduction Statistical data collection is concerned with the planning of studies, especially with the design of randomized experiments and with the planning of surveys using random sampling. The initial analysis of the data often follows the study protocol specified prior to the study being conducted. The data from a study can also be analyzed to consider secondary hypotheses inspired by the initial results, or to suggest new studies. A secondary analysis of the data from a planned study uses tools from data analysis, and the process of doing this is mathematical statistics. Data analysis is divided into: * descriptive stati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]