Spread (projective Geometry)
A frequently studied problem in finite geometry is to identify ways in which an object can be covered by other simpler objects such as points, lines, and planes. In projective geometry, a specific instance of this problem that has numerous applications is determining whether, and how, a projective space can be covered by pairwise disjoint subspaces which have the same dimension; such a partition is called a spread. Specifically, a spread of a projective space PG(d,K), where d \geq 1 is an integer and K a division ring, is a set of r-dimensional subspaces, for some 0 < r < d such that every point of the space lies in exactly one of the elements of the spread. Spreads are particularly well-studied in projective geometries over finite fields, though some notable results apply to infinite projective geometries as well. In the finite case, the foundational work on spreads appears in André and independently in Bruck-Bose in connection with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Geometry
A finite geometry is any geometry, geometric system that has only a finite set, finite number of point (geometry), points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective space, projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius plane, Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometry, inversive geometries. Finite geometries may be constructed via linear algebra, starting from vector spaces over a finite field; the affine and projective planes so const ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hall Plane
In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided . Algebraic construction via Hall systems The original construction of Hall planes was based on the Hall quasifield (also called a ''Hall system''), ''H'' of order ''p''2''n'' for ''p'' a prime. The creation of the plane from the quasifield follows the standard construction (see quasifield for details). To build a Hall quasifield, start with a Galois field, for ''p'' a prime and a quadratic irreducible polynomial over ''F''. Extend , a two-dimensional vector space over ''F'', to a quasifield by defining a multiplication on the vectors by when and otherwise. Writing the elements of ''H'' in terms of a basis , that is, identifying with as ''x'' and ''y'' vary over ''F'', we can identify the elements of ''F'' as the ordered pairs , i.e. . The properties of the defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form ''over'' . Over the reals, a quadratic form is said to be '' definite'' if it takes the value zero only when all its variables are simultaneously zero; otherwise it is '' isotropic''. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory ( orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology ( intersection forms of manifolds, especially four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form -\mathbf^\math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sesquilinear Form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix ''sesqui-'' meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector. A motivating special case is a sesquilinear form on a complex vector space, . This is a map that is linear in one argument and "twists" the linearity of the other argument by complex conjugation (referred to as being antilinear in the other argument). This case arises naturally in mathematical physics applications. Another important case allows the scalars t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotropic Quadratic Form
In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise it is a definite quadratic form. More explicitly, if ''q'' is a quadratic form on a vector space ''V'' over ''F'', then a non-zero vector ''v'' in ''V'' is said to be isotropic if . A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that is quadratic space and ''W'' is a subspace of ''V''. Then ''W'' is called an isotropic subspace of ''V'' if ''some'' vector in it is isotropic, a totally isotropic subspace if ''all'' vectors in it are isotropic, and a definite subspace if it does not contain ''any'' (non-zero) isotropic vectors. The of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. Over the real numbers, more generally in the case where ''F'' is a real closed field (so that the signature is defined), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polar Space
In mathematics, in the field of geometry, a polar space of rank ''n'' (), or ''projective index'' , consists of a set ''P'', conventionally called the set of points, together with certain subsets of ''P'', called ''subspaces'', that satisfy these axioms: * Every subspace is isomorphic to a projective space with and ''K'' a division ring. (That is, it is a Desarguesian projective geometry.) For each subspace the corresponding ''d'' is called its dimension. * The intersection of two subspaces is always a subspace. * For each subspace ''A'' of dimension and each point ''p'' not in ''A'', there is a unique subspace ''B'' of dimension containing ''p'' and such that is -dimensional. The points in are exactly the points of ''A'' that are in a common subspace of dimension 1 with ''p''. * There are at least two disjoint subspaces of dimension . It is possible to define and study a slightly bigger class of objects using only the relationship between points and lines: a polar space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pencil (mathematics)
In geometry, a pencil is a family of geometric objects with a common property, for example the set of Line (geometry), lines that pass through a given point in a plane (mathematics), plane, or the set of circles that pass through two given points in a plane. Although the definition of a pencil is rather vague, the common characteristic is that the pencil is completely determined by any two of its members. Analogously, a set of geometric objects that are determined by any three of its members is called a bundle. Thus, the set of all lines through a point in three-space is a bundle of lines, any two of which determine a pencil of lines. To emphasize the two-dimensional nature of such a pencil, it is sometimes referred to as a ''flat pencil''. Any geometric object can be used in a pencil. The common ones are lines, planes, circles, conics, spheres, and general curves. Even points can be used. A pencil of points is the set of all points on a given line. A more common term for this ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Klein Quadric
In mathematics, the lines of a 3-dimensional projective space, ''S'', can be viewed as points of a 5-dimensional projective space, ''T''. In that 5-space, the points that represent each line in ''S'' lie on a quadric, ''Q'' known as the Klein quadric. If the underlying vector space of ''S'' is the 4-dimensional vector space ''V'', then ''T'' has as the underlying vector space the 6-dimensional exterior square Λ2''V'' of ''V''. The line coordinates obtained this way are known as Plücker coordinates. These Plücker coordinates satisfy the quadratic relation : p_ p_+p_p_+p_ p_ = 0 defining ''Q'', where : p_ = u_i v_j - u_j v_i are the coordinates of the line spanned by the two vectors ''u'' and ''v''. The 3-space, ''S'', can be reconstructed again from the quadric, ''Q'': the planes contained in ''Q'' fall into two equivalence classes, where planes in the same class meet in a point, and planes in different classes meet in a line or in the empty set. Let thes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conic Section
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a '' focus'', and some particular line, called a ''directrix'', are in a fixed ratio, called the ''eccentricity''. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2; that is, as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |