Sporadic Groups
In the mathematical classification of finite simple groups, there are a number of Group (mathematics), groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups. The monster group, or ''friendly giant'', is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Émile Léonard Math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Classification Of Finite Simple Groups
In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating groups, alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic groups, sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mathieu Group M24
In the area of modern algebra known as group theory, the Mathieu group ''M24'' is a sporadic simple group of order : 244,823,040 = 21033571123 : ≈ 2. History and properties ''M24'' is one of the 26 sporadic groups and was introduced by . It is a 5-transitive permutation group on 24 objects. The Schur multiplier and the outer automorphism group are both trivial. The Mathieu groups can be constructed in various ways. Initially, Mathieu and others constructed them as permutation groups. It was difficult to see that M24 actually existed, that its generators did not just generate the alternating group A24. The matter was clarified when Ernst Witt constructed M24 as the automorphism (symmetry) group of an S(5,8,24) Steiner system W24 (the Witt design). M24 is the group of permutations that map every block in this design to some other block. The subgroups M23 and M22 then are easily defined to be the stabilizers of a single point and a pair of points res ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Fischer Group Fi24 In the area of modern algebra known as group theory, the Fischer group ''Fi24'' or ''F24'' or ''F3+'' is a sporadic simple group of order : 1,255,205,709,190,661,721,292,800 : = 22131652731113172329 : ≈ 1. History and properties ''Fi24'' is one of the 26 sporadic groups and is the largest of the three Fischer groups introduced by while investigating 3-transposition groups. It is the 3rd largest of the sporadic groups (after the Monster group and Baby Monster group). The outer automorphism group has order 2, and the Schur multiplier has order 3. The automorphism group is a 3-transposition group Fi24, containing the simple group with index 2. The centralize |