Spijker's Lemma
   HOME





Spijker's Lemma
In mathematics, Spijker's lemma is a result in the theory of rational mappings of the Riemann sphere. It states that the image of a circle under a complex rational map with numerator and denominator having degree at most ''n'' has length at most 2''nπ''. Applications Spijker's lemma can be used to derive a sharp bound version of Kreiss matrix theorem In matrix analysis, Kreiss matrix theorem relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by Heinz-Otto Kreiss to analyze the stability of finite difference methods for partia .... See also * Buffon's needle External links * References *{{cite journal, last = Wegert, first = Elias, author2=Trefethen, Lloyd N. , title = From the Buffon Needle Problem to the Kreiss Matrix Theorem, journal = The American Mathematical Monthly, volume = 101, issue = 2, pages = 132–139, date=February 1994, doi = 10.2307/2324361, jstor=2324361, url = https://ecommons.cornell. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Mapping
In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are Irreducible component, irreducible. Definition Formal definition Formally, a rational map f \colon V \to W between two varieties is an equivalence class of pairs (f_U, U) in which f_U is a morphism of varieties from a Empty set, non-empty open set U\subset V to W, and two such pairs (f_U, U) and (_, U') are considered equivalent if f_U and _ coincide on the intersection U \cap U' (this is, in particular, vacuous truth, vacuously true if the intersection is empty, but since V is assumed irreducible, this is impossible). The proof that this defines an equivalence relation relies on the following lemma: * If two morphisms of varieties are equal on some non-empty open set, then they are equal. f is said to be dominant if one (equivalently, every) representative f_U in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the Pole (complex analysis), poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In geometr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each Element (mathematics), element of a given subset A of its Domain of a function, domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general Binary relation#Operations, binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a Function (mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a Disk (mathematics), disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Terminology * Annulus (mathematics), Annulus: a ring-shaped object, the region bounded by two concentric circles. * Circular arc, Arc: any Connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerator
A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A ''common'', ''vulgar'', or ''simple'' fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates of a cake. Fractions can be used to represent ratios and division. Thus the fraction can be used to represent the ratio 3:4 (the ratio of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see Order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kreiss Matrix Theorem
In matrix analysis, Kreiss matrix theorem relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by Heinz-Otto Kreiss to analyze the stability of finite difference methods for partial difference equations. Kreiss constant of a matrix Given a matrix ''A'', the Kreiss constant 𝒦(''A'') (with respect to the closed unit circle) of ''A'' is defined as \mathcal(\mathbf)=\sup _(, z, -1)\left\, (z-\mathbf)^\right\, , while the Kreiss constant 𝒦(''A'') with respect to the left-half plane is given by \mathcal_(\mathbf)=\sup _(\Re(z))\left\, (z-\mathbf)^\right\, . Properties * For any matrix ''A'', one has that 𝒦(''A'') ≥ 1 and 𝒦(''A'') ≥ 1. In particular, 𝒦(''A'') (resp. 𝒦(''A'')) are finite only if the matrix ''A'' is Schur stable (resp. Hurwitz stable). * Kreiss constant can be interpreted as a measure of normality of a matrix. In particular, for normal matrices ''A'' with spectral radius les ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Buffon's Needle
In probability theory, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips? Buffon's needle was the earliest problem in geometric probability to be solved; it can be solved using integral geometry. The solution for the sought probability , in the case where the needle length is not greater than the width of the strips, is :p=\frac \cdot \frac. This can be used to design a Monte Carlo method for approximating the number , although that was not the original motivation for de Buffon's question. The seemingly unusual appearance of in this expression occurs because the underlying probability distribution function for the needle orientation is rotationally symmetric. Solution The problem in more mathematical terms is: G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Complex Analysis
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasonin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]