Solar Facula
Solar faculae are bright spots in the photosphere that form in the canyons between solar granules, short-lived convection cells several thousand kilometers across that constantly form and dissipate over timescales of several minutes. Faculae are produced by concentrations of magnetic field lines. Strong concentrations of faculae appear during increased solar activity, with or without sunspots. Faculae and sunspots contribute noticeably to variations in the solar constant. The chromospheric counterpart of a facular region is called a plage Plage may refer to: * Plage (astronomy), a bright region in the chromosphere of the Sun * Plage (mycology), a clear, unornamented area on the basal area of an ornamented fungal spore * "Plage" (song), a 2011 song by English electronic band Crystal .... References Sun Solar phenomena {{sun-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faculae
A facula (plural: faculae ), Latin for "little torch", is literally a "bright spot". The term has several common technical uses. It is used in planetary nomenclature for naming certain surface features of planets and moons,. and is also a type of surface phenomenon on the Sun's photosphere. In addition, a bright region in the projected field of a light source is sometimes referred to as a facula, and photographers often use the term to describe bright, typically circular features in photographs that correspond to light sources or bright reflections in a defocused image. Solar facula Solar faculae are bright spots in the photosphere that form in the canyons between solar granules, short-lived convection cells several thousand kilometers across that constantly form and dissipate over timescales of several minutes. Faculae are produced by concentrations of magnetic field lines. Strong concentrations of faculae appear in solar activity, with or without sunspots. The faculae and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Photosphere
The photosphere is a star's outer shell from which light is radiated. The term itself is derived from Ancient Greek roots, φῶς, φωτός/''phos, photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it being a spherical surface that is perceived to emit light. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will escape without being scattered. A photosphere is the deepest region of a luminous object, usually a star, that is transparent to photons of certain wavelengths. Temperature The surface of a star is defined to have a temperature given by the effective temperature in the Stefan–Boltzmann law. Stars, except neutron stars, have no solid or liquid surface. Therefore, the photosphere is typically used to describe the Sun's or another star's visual surface. Composition of the Sun The Sun is composed primari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Granule (solar Physics)
A granule is a convection cell in the Sun's photosphere. They are caused by convection currents of plasma in the Sun's convective zone, directly below the photosphere. The grainy appearance of the solar photosphere is produced by the tops of these convective cells and is called ''granulation''. The rising part of the granules is located in the center where the plasma is hotter. The outer edge of the granules is darker due to the cooler descending plasma. (The terms ''darker'' and ''cooler'' are strictly by comparison to the brighter, hotter plasma. According to the Stefan–Boltzmann law, luminosity increases with the fourth power of temperature leading to even a small loss of heat producing a large luminosity contrast.) In addition to the visible appearance, which would be explained by convective motion, Doppler shift measurements of the light from individual granules provides evidence for the convective nature of the granules. A typical granule has a diameter on the or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Field Line
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Phenomena
Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. These phenomena take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots. These phenomena are believed to be generated by a helical dynamo, located near the center of the Sun's mass, which generates strong magnetic fields, as well as a chaotic dynamo, located near the surface, which generates smaller magnetic field fluctuations. The total sum of all solar fluctuations is referred to as solar variation. The collective effect of all solar variations within the Sun's gravitational field is referred to as space weather. A major weather component is the solar wind, a stream of plasma released from the Sun's upper atmosphere. It is responsible for the aurora, natural light displays in the sky in the Arctic and Antarctic. Space weather disturbances can cause solar storms on Earth, disrupting communications, as well as geomagnetic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sunspots
Sunspots are phenomena on the Sun's photosphere that appear as temporary spots that are darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic flux that inhibit convection. Sunspots appear within active regions, usually in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle. Individual sunspots or groups of sunspots may last anywhere from a few days to a few months, but eventually decay. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from to . Larger sunspots can be visible from Earth without the aid of a telescope. They may travel at relative speeds, or proper motions, of a few hundred meters per second when they first emerge. Indicating intense magnetic activity, sunspots accompany other active region phenomena such as coronal loops, prominences, and reconnection events. Most solar flares and corona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Constant
The solar constant (''GSC'') is a flux density measuring mean solar electromagnetic radiation ( total solar irradiance) per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun (roughly the distance from the Sun to the Earth). The solar constant includes radiation over the entire electromagnetic spectrum. It is measured by satellite as being 1.361 kilowatts per square meter (kW/m2) at solar minimum (the time in the 11-year solar cycle when the number of sunspots is minimal) and approximately 0.1% greater (roughly 1.362 kW/m2) at solar maximum. The solar "constant" is not a physical constant in the modern CODATA scientific sense; that is, it is not like the Planck constant or the speed of light which are absolutely constant in physics. The solar constant is an average of a varying value. In the past 400 years it has varied less than 0.2 percent.http://lasp.colorado.edu/home/sorce/data/tsi-data/ Total Solar Irradiance ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chromosphere
A chromosphere ("sphere of color") is the second layer of a star's atmosphere, located above the photosphere and below the solar transition region and corona. The term usually refers to the Sun's chromosphere, but not exclusively. In the Sun's atmosphere, the chromosphere is roughly in height, or slightly more than 1% of the Sun's radius at maximum thickness. It possesses a homogeneous layer at the boundary with the photosphere. Hair-like jets of plasma, called spicules, rise from this homogeneous region and through the chromosphere, extending up to into the corona above. The chromosphere has a characteristic red color due to electromagnetic emissions in the ''H''α spectral line. Information about the chromosphere is primarily obtained by analysis of its emitted electromagnetic radiation. Chromospheres have also been observed on stars other than the Sun. On large stars, chromospheres sometimes make up a significant proportion of the entire star. For example, the chr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plage (astronomy)
A plage is a bright region in the Sun's chromosphere, typically found in and around active regions. Historically, they have been referred to as ''bright flocculi'', in contrast to dark flocculi, and as ''chromospheric faculae'', in contrast to photospheric faculae. Etymology The term is often believed to be poetically taken from the French word for "beach"; however, this is likely a misunderstanding of an 1893 article by Henri-Alexandre Deslandres where the name ''facular flames'' was suggested. In the article, Deslandres also refers to them as ''plages brillantes'', meaning ''bright regions'', which became the more commonly used term. Description Classically plage have been defined as regions that are bright in Hα and other chromospheric emission lines. but nowadays most researchers identify plage based on the photospheric magnetic field concentration of the faculae below. The magnetic field of plage is confined to the intergranular lanes in the photosphere with a strengt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |