HOME





Skewes' Number
In number theory, Skewes's number is the smallest natural number x for which the prime-counting function \pi(x) exceeds the logarithmic integral function \operatorname(x). It is named for the South African mathematician Stanley Skewes who first computed an upper bound on its value. The exact value of Skewes's number is still not known, but it is known that there is a crossing between \pi(x) \operatorname(x) near e^ \operatorname(x), Skewes's research supervisor J.E. Littlewood had proved in that there is such a number (and so, a first such number); and indeed found that the sign of the difference \pi(x) - \operatorname(x) changes infinitely many times. Littlewood's proof did not, however, exhibit a concrete such number x, nor did it even give any bounds on the value. Skewes's task was to make Littlewood's existence proof effective: exhibit some concrete upper bound for the first sign change. According to Georg Kreisel, this was not considered obvious even in principle at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenberg in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acta Arithmetica
''Acta Arithmetica'' is a scientific journal of mathematics publishing papers on number theory. It was established in 1935 by Salomon Lubelski and Arnold Walfisz. The journal is published by the Institute of Mathematics of the Polish Academy of Sciences. References External links Online archives
(Library of Science, Issues: 1935–2000) 1935 establishments in Poland Number theory journals Academic journals established in 1935 Polish Academy of Sciences academic journals Biweekly journals Academic journals associated with learned and professional societies {{math-journal-stub English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Journal Of Number Theory
International is an adjective (also used as a noun) meaning "between nations". International may also refer to: Music Albums * ''International'' (Kevin Michael album), 2011 * ''International'' (New Order album), 2002 * ''International'' (The Three Degrees album), 1975 *''International'', 2018 album by L'Algérino Songs * The Internationale, the left-wing anthem * "International" (Chase & Status song), 2014 * "International", by Adventures in Stereo from ''Monomania'', 2000 * "International", by Brass Construction from ''Renegades'', 1984 * "International", by Thomas Leer from ''The Scale of Ten'', 1985 * "International", by Kevin Michael from ''International'' (Kevin Michael album), 2011 * "International", by McGuinness Flint from ''McGuinness Flint'', 1970 * "International", by Orchestral Manoeuvres in the Dark from '' Dazzle Ships'', 1983 * "International (Serious)", by Estelle from '' All of Me'', 2012 Politics * Internationalism (politics) * Political international, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and Other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the '' Journal Citation Reports'', the journal has a 2020 impact factor of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Academic journals established in 1943 American Mathematical Society academic journals Bimonthly journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sexy Prime
In number theory, sexy primes are prime numbers that differ from each other by . For example, the numbers and are a pair of sexy primes, because both are prime and 11 - 5 = 6. The term "sexy prime" is a pun stemming from the Latin word for six: . If or (where is the lower prime) is also prime, then the sexy prime is part of a prime triplet. In August 2014, the Polymath group, seeking the proof of the twin prime conjecture, showed that if the generalized Elliott–Halberstam conjecture is proven, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 6 and as such they are either twin, cousin A cousin is a relative who is the child of a parent's sibling; this is more specifically referred to as a first cousin. A parent of a first cousin is an aunt or uncle. More generally, in the kinship system used in the English-speaking world, ... or sexy primes. The sexy primes (sequences and in OEIS) below 500 are: :(5,11), (7,13) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Hardy–Littlewood Conjecture
In number theory, the first Hardy–Littlewood conjecture states the asymptotic formula for the number of prime ''k''-tuples less than a given magnitude by generalizing the prime number theorem. It was first proposed by G. H. Hardy and John Edensor Littlewood in 1923.. Statement Let m_1, m_2, \ldots, m_k be positive even integers such that the numbers of the sequence P = (p, p + m_1, p + m_2, \ldots , p + m_k) do not form a complete residue class with respect to any prime and let \pi_(n) denote the number of primes p less than n st. p + m_1, p + m_2, \ldots , p + m_k are all prime. Then :\pi_P(n)\sim C_P\int_2^n \frac, where :C_P=2^k \prod_\frac is a product over odd primes and w(q; m_1, m_2, \ldots , m_k) denotes the number of distinct residues of 0, m_1, m_2, \ldots , m_k modulo q. The case k=1 and m_1=2 is related to the twin prime conjecture. Specifically if \pi_2(n) denotes the number of twin primes less than ''n'' then :\pi_2(n)\sim C_2 \int_2^n \frac, where :C_2 = 2\pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime K-tuple
In number theory, a prime -tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a -tuple , the positions where the -tuple matches a pattern in the prime numbers are given by the set of integers for which all of the values are prime. Typically the first value in the -tuple is 0 and the rest are distinct positive even numbers. Named patterns Several of the shortest ''k''-tuples are known by other common names: OEIS sequence A257124 covers 7-tuples (''prime septuplets'') and contains an overview of related sequences, e.g. the three sequences corresponding to the three admissible 8-tuples (''prime octuplets''), and the union of all 8-tuples. The first term in these sequences corresponds to the first prime in the smallest prime constellation shown below. Admissibility In order for a -tuple to have infinitely many positions at which all of its values are prime, there cannot exist a prime such that the tuple includ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square (algebra)
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations ''x''^2 ( caret) or ''x''**2 may be used in place of ''x''2. The adjective which corresponds to squaring is '' quadratic''. The square of an integer may also be called a '' square number'' or a ''perfect square''. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial is the quadratic polynomial . One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirichlet's Approximation Theorem
In number theory, Dirichlet's theorem on Diophantine approximation, also called Dirichlet's approximation theorem, states that for any real numbers \alpha and N , with 1 \leq N , there exist integers p and q such that 1 \leq q \leq N and : \left , q \alpha -p \right , \leq \frac < \frac. Here \lfloor N\rfloor represents the of N . This is a fundamental result in , showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality : \left , \alpha -\frac \right , < \frac is satisfied by infinitely many integers ''p'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]