HOME





Skeleton (category Theory)
In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ..., a skeleton of a category (category theory), category is a subcategory that, roughly speaking, does not contain any extraneous isomorphisms. In a certain sense, the skeleton of a category is the "smallest" equivalence of categories, equivalent category, which captures all "categorical properties" of the original. In fact, two categories are equivalence of categories, equivalent iff, if and only if they have isomorphism of categories, isomorphic skeletons. A category is called skeletal if isomorphic objects are necessarily identical. Definition A skeleton of a category ''C'' is an Equivalence (category theory), equivalent category ''D'' in which isomorphic objects are equal. Typically, a skeleton is taken to be a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glossary Of Category Theory
This is a glossary of properties and concepts in category theory in mathematics. (see also Outline of category theory.) *Notes on foundations: In many expositions (e.g., Vistoli), the set-theoretic issues are ignored; this means, for instance, that one does not distinguish between small and large categories and that one can arbitrarily form a localization of a category.If one believes in the existence of strongly inaccessible cardinals, then there can be a rigorous theory where statements and constructions have references to Grothendieck universes. Like those expositions, this glossary also generally ignores the set-theoretic issues, except when they are relevant (e.g., the discussion on accessibility.) Especially for higher categories, the concepts from algebraic topology are also used in the category theory. For that see also glossary of algebraic topology. The notations and the conventions used throughout the article are: *[''n''] = , which is viewed as a category (by writing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skeletonization Of Fusion Categories
In mathematics, the skeletonization of fusion categories is a process whereby one extracts the core data of a fusion category or related categorical object in terms of minimal Set theory, set-theoretic information. This set-theoretic information is referred to as the skeletal data of the fusion category. This process is related to the general technique of Skeleton (category theory), skeletonization in category theory. Skeletonization is often used for working with examples, doing computations, and classifying fusion categories. The relevant feature of Fusion category, fusion categories which makes the technique of skeletonization effective is the strong finiteness conditions placed on fusion categories, such as the requirements that they have finitely many isomorphism classes of Schur's lemma, simple objects and that all of their Hom space, hom-spaces are finite dimensional. This allows the entire categorical structure of a fusion category to be encoded in a finite amount of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is Reflexive relation, reflexive, antisymmetric relation, antisymmetric, and Transitive relation, transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, but not quite, as they are not necessarily Antisymmetric relation, antisymmetric. A natural example of a preorder is the Divisor#Definition, divides relation "x divides y" between integers, polynomials, or elements of a commutative ring. For example, the divides relation is reflexive as every integer divides itself. But the divides relation is not antisymmetric, because 1 divides -1 and -1 divides 1. It is to this preorder that "greatest" and "lowest" refer in the phrases "greatest common divisor" and "lowest common multiple" (except that, for integers, the greatest common divisor is also the greatest for the natural order of the integers). Preorders are closely related to equivalence relations and (non-strict) partial orders. Both of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-order
In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than . There may be elements, besides the least element, that have no predecessor (see below for an example). A well-ordered set contains for every subset with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of in . If ≤ is a non-strict well ordering, then < is a st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Numbers
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FinOrd
In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are all functions between them. Properties FinSet is a full subcategory of Set, the category whose objects are all sets and whose morphisms are all functions. Like Set, FinSet is a large category. FinOrd is a full subcategory of FinSet as by the standard definition, suggested by John von Neumann, each ordinal is the well-ordered set of all smaller ordinals. Unlike Set and FinSet, FinOrd is a small category. FinOrd is a skeleton of FinSet. Therefore, FinSet and FinOrd are equivalent categories. Topoi Like Set, FinSet and FinOrd are topoi. As in Set, in FinSet the categorical product of two objects ''A'' and ''B'' is given by the cartesian product , the categorical sum is given by the disjoint union , and the exponential object ''B'''' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the ''cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an '' infinite set''. For example, the set of all positive integers is infinite: Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set S is called finite if there exists a bijection for some natural number n (natural numbers are defined as sets in Zermelo-Fraenkel set theory). The number n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




FinSet
In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are all functions between them. Properties FinSet is a full subcategory of Set, the category whose objects are all sets and whose morphisms are all functions. Like Set, FinSet is a large category. FinOrd is a full subcategory of FinSet as by the standard definition, suggested by John von Neumann, each ordinal is the well-ordered set of all smaller ordinals. Unlike Set and FinSet, FinOrd is a small category. FinOrd is a skeleton of FinSet. Therefore, FinSet and FinOrd are equivalent categories. Topoi Like Set, FinSet and FinOrd are topoi. As in Set, in FinSet the categorical product of two objects ''A'' and ''B'' is given by the cartesian product , the categorical sum is given by the disjoint union , and the exponential object ''B''' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]