HOME





Seesaw Mechanism
In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981. There are several types of models, each extending the Standard Model. The simplest version, "Type 1", extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interaction, and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification. Type 1 seesaw This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy neutrino for each flavor, which has yet to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grand Unified Theory
A Grand Unified Theory (GUT) is any Mathematical model, model in particle physics that merges the electromagnetism, electromagnetic, weak interaction, weak, and strong interaction, strong fundamental interaction, forces (the three gauge theory, gauge interactions of the Standard Model) into a single force at high energy, energies. Although this Unification (physics), unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the Chronology of the universe#Very early universe, very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy, the electromagnetic interaction and weak interaction unify into a single combined electroweak interaction. GUT models predict that at even grand unification energy, higher energy, the strong and electroweak interaction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks. Algebraically they behave, in a certain sense, as the "square root" of a vector. This is not readily apparent from direct examination, but it has slowly become clear over the last 60 years that spinorial representations are fundamental to geometry. For example, effectively all Riemannian manifolds can have spinors and spin connections built upon them, via the Clifford algebra. The Dirac spinor is specific to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form ''over'' . Over the reals, a quadratic form is said to be '' definite'' if it takes the value zero only when all its variables are simultaneously zero; otherwise it is '' isotropic''. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory ( orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology ( intersection forms of manifolds, especially four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form -\mathbf^\math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - bi. The complex conjugate of z is often denoted as \overline or z^*. In polar form, if r and \varphi are real numbers then the conjugate of r e^ is r e^. This can be shown using Euler's formula. The product of a complex number and its conjugate is a real number: a^2 + b^2 (or r^2 in polar coordinates). If a root of a univariate polynomial with real coefficients is complex, then its complex conjugate is also a root. Notation The complex conjugate of a complex number z is written as \overline z or z^*. The first notation, a vinculum, avoids confusion with the notation for the conjugate transpose of a matrix, which can be thought of as a generalization of the complex conjugate. The second is preferred in physics, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentz Covariance
In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: # A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sterile Neutrino
Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term ''sterile neutrino'' is used to distinguish them from the known, ordinary ''active neutrinos'' in the Standard Model, which carry an isospin charge of and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality (see '), which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs). The existence of right-handed neutrinos is theoretically well-motivated, because the known active neutrinos are left-handed and all other known fermions have been observed with both left and right chirality. They could ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singlet State
In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number s=0. As a result, there is only one spectral line of a singlet state. In contrast, a doublet state contains one unpaired electron and shows splitting of spectral lines into a doublet, and a triplet state has two unpaired electrons and shows threefold splitting of spectral lines. History Singlets and the related Spin (physics), spin concepts of Doublet state, doublets and Triplet state, triplets occur frequently in atomic physics and nuclear physics, where one often needs to determine the total spin of a collection of particles. Since the only observed fundamental particle with zero spin is the extremely inaccessible Higgs boson, singlets in everyday physics are necessarily composed of sets of particles whose individual spins are non-zero, e.g. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Doublet State
In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems. Essentially all occurrences of doublets in nature arise from rotational symmetry; spin 1/2 is associated with the fundamental representation of the Lie group SU(2). History and applications The term "doublet" dates back to the early 19th century, when it was observed that certain spectral lines of an ionized, excited gas would split into two under the influence of a strong magnetic field, in an effect known as the anomalous Zeeman effect. Such spectral lines were observed not only in the laboratory, but also in astronomical spectroscopy observations, allowing astronomers to deduce the existence of, and measure the strength of magnetic fields around the Sun, stars and galaxies. Conversely, it was the observation of do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Isospin
In particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or is more important than ; typically "weak isospin" is used as short form of the proper term "3rd component of weak isospin". It can be understood as the eigenvalue of a charge operator. Notation This article uses and for weak isospin and its projection. Regarding ambiguous notation, is also used to represent the 'normal' (strong force) isospin, same for its third component a.k.a. or  . Aggravating the confusion, is also used as the symbol for the Topness quantum number. Conservation law The weak isospin conservation law relates to the conservation of \ T_3\ ; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chirality (physics)
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive ("right-handed") if the direction of its spin is the same as the direction of its motion. It is negative ("left-handed") if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: "left" is negative, "right" is positive. The chirality of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Spinor
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion). In condensed matter physics, some materials can display quasiparticles that behave as Weyl fermions, leading to the notion of Weyl semimetals. Mathematically, any Dirac fermion can be decomposed as two Weyl fermions of opposite chirality coupled by the mass term. History The Dirac equation was published in 1928 by Paul Dirac, and was first used to model spin-1/2 particles in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Action (physics)
In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. Action and the variational principle are used in Feynman's formulation of quantum mechanics and in general relativity. For systems with small values of action close to the Planck constant, quantum effects are significant. In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which it has that amount of energy. More formally, action is a mathematical functional which takes the trajectory ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]