Schrödinger Logic
   HOME





Schrödinger Logic
Schrödinger logics are a kind of non-classical logic in which the law of identity is restricted. These logics are motivated by the consideration that in quantum mechanics, elementary particles may be indistinguishable, even in principle, on the basis of any measurement. This in turn suggests that such particles cannot be considered as self-identical objects in the way that such things are usually treated within formal logic and set theory. Schrödinger logics are many-sorted logics in which the expression ''x'' = ''y'' is not a well-formed formula in general. A formal semantics can be provided using the concept of a quasi-set. Schrödinger logics were introduced by da Costa and Krause. Schrödinger logic is not related to quantum logic, which is a propositional logic that rejects the distributivity laws of classical logic Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-classical Logic
Non-classical logics (and sometimes alternative logics or non-Aristotelian logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well. In addition, some parts of theoretical computer science can be thought of as using non-classical reasoning, although this varies according to the subject area. For example, the basic boolean functions (e.g. AND, OR, NOT, etc) in computer science are very much classical in nature, as is clearly the case given that they can be fully described by classical truth tables. However, in contrast, some computeriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of Identity
In logic, the law of identity states that each thing is identical with itself. It is the first of the traditional three laws of thought, along with the law of noncontradiction, and the law of excluded middle. However, few systems of logic are built on just these laws. History Ancient philosophy The earliest recorded use of the law appears in Plato's dialogue '' Theaetetus'' (185a), wherein Socrates attempts to establish that what we call "sounds" and "colours" are two different classes of thing: It is used explicitly only once in Aristotle, in a proof in the '' Prior Analytics'': Medieval philosophy Aristotle believed the law of non-contradiction to be the most fundamental law. Both Thomas Aquinas (''Met.'' IV, lect. 6) and Duns Scotus (''Quaest. sup. Met.'' IV, Q. 3) follow Aristotle in this respect. Antonius Andreas, the Spanish disciple of Scotus (d. 1320), argues that the first place should belong to the law "Every Being is a Being" (''Omne Ens est Ens'', Qq. in Met ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-formed Formula
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff". A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic. Introduction A key use of formulas is in propositional logic and predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, proofs can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven. Alth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semantics Of Logic
In logic, the semantics of logic or formal semantics is the study of the meaning and interpretation of formal languages, formal systems, and (idealizations of) natural languages. This field seeks to provide precise mathematical models that capture the pre-theoretic notions of truth, validity, and logical consequence. While logical syntax concerns the formal rules for constructing well-formed expressions, logical semantics establishes frameworks for determining when these expressions are true and what follows from them. The development of formal semantics has led to several influential approaches, including model-theoretic semantics (pioneered by Alfred Tarski), proof-theoretic semantics (associated with Gerhard Gentzen and Michael Dummett), possible worlds semantics (developed by Saul Kripke and others for modal logic and related systems), algebraic semantics (connecting logic to abstract algebra), and game semantics (interpreting logical validity through game ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Logic
In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manip­ulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an obs­ervation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure. A number of other logics have also been proposed to analyze quantum-mechanical phenomena, unfortunately also under the name of "quantum logic(s)". They are not the subject of this article. For discussion of the similarities and differences between quantum logic and some of these competitors, see '. Quantum logic has been proposed as the correct logic for propositional inference generally, most notably by the philosopher Hilary Putnam, at least at one point in his career. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Logic
Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-classical Logic
Non-classical logics (and sometimes alternative logics or non-Aristotelian logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well. In addition, some parts of theoretical computer science can be thought of as using non-classical reasoning, although this varies according to the subject area. For example, the basic boolean functions (e.g. AND, OR, NOT, etc) in computer science are very much classical in nature, as is clearly the case given that they can be fully described by classical truth tables. However, in contrast, some computeriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]