Schmidt Number
In fluid dynamics, the Schmidt number (denoted ) of a fluid is a dimensionless number defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975). The Schmidt number is the ratio of the shear component for diffusivity (viscosity divided by density) to the diffusivity for mass transfer . It physically relates the relative thickness of the hydrodynamic layer and mass-transfer boundary layer. It is defined as: :\mathrm = \frac = \frac = \frac = \frac where (in SI units): * \nu = \tfrac \mu \rho is the kinematic viscosity (m2/s) * is the mass diffusivity (m2/s). * is the dynamic viscosity of the fluid (Pa·s = N·s/m2 = kg/m·s) * is the density of the fluid (kg/m3) * is the Peclet Number * is the Reynolds Number. The heat transfer analog of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Entanglement
Quantum entanglement is the phenomenon where the quantum state of each Subatomic particle, particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical physics and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurement#Quantum mechanics, Measurements of physical properties such as position (vector), position, momentum, Spin (physics), spin, and polarization (waves), polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Viscosity
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's center line than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strengt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimensionless Numbers Of Fluid Mechanics
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into unit of measurement, units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined Unit of measurement, units. For instance, alcohol by volume (ABV) represents a volumetric ratio; its value remains independent of the specific Unit of volume, units of volume used, such as in milliliters per milliliter (mL/mL). The 1, number one is recognized as a dimensionless Base unit of measurement, base quantity. Radians serve as dimensionless units for Angle, angular measurements, derived from the universal ratio of 2π times the radius of a circle being equal to its circumference. Dimensionless quantities play a crucial role serving as parameters in differential equations in various technical disciplines. In calculus, concepts like the unitless ratios ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed-form Expression
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are ''n''th root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions. The ''closed-form problem'' arises when new ways are introduced for specifying mathematical objects, such as limits, series, and integrals: given an object specified with such tools, a natural problem is to find, if possible, a ''closed-form expression'' of this object; that is, an expression of this object in terms of previous ways of specifying it. Example: roots of polynomials The quadratic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Density
Power density, defined as the amount of power (the time rate of energy transfer) per unit volume, is a critical parameter used across a spectrum of scientific and engineering disciplines. This metric, typically denoted in watts per cubic meter (W/m3), serves as a fundamental measure for evaluating the efficacy and capability of various devices, systems, and materials based on their spatial energy distribution. The concept of power density finds extensive application in physics, engineering, electronics, and energy technologies. It plays a pivotal role in assessing the efficiency and performance of components and systems, particularly in relation to the power they can handle or generate relative to their physical dimensions or volume. In the domain of energy storage and conversion technologies, such as batteries, fuel cells, motors, and power supply units, power density is a crucial consideration. Here, power density often refers to the volume power density, quantifying how much ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stirling Engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (physics), work. More specifically, the Stirling engine is a closed-cycle regenerative heat engine, with a permanent gaseous working fluid. ''Closed-cycle'', in this context, means a thermodynamic system in which the working fluid is permanently contained within the system. ''Regenerative'' describes the use of a specific type of internal heat exchanger and thermal store, known as the Regenerative heat exchanger, ''regenerator''. Strictly speaking, the inclusion of the regenerator is what differentiates a Stirling engine from other closed-cycle hot air engines. In the Stirling engine, a working fluid (e.g. air) is heated by energy supplied from outside the engine's interior space (cylinder). As the fluid expands, mechanical work is extrac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turbulent Prandtl Number
The turbulent Prandtl number (Prt) is a non-dimensional term defined as the ratio between the momentum eddy diffusivity and the heat transfer eddy diffusivity. It is useful for solving the heat transfer problem of turbulent boundary layer flows. The simplest model for Prt is the Reynolds analogy, which yields a turbulent Prandtl number of 1. From experimental data, Prt has an average value of 0.85, but ranges from 0.7 to 0.9 depending on the Prandtl number of the fluid in question. Definition The introduction of eddy diffusivity and subsequently the turbulent Prandtl number works as a way to define a simple relationship between the extra shear stress and heat flux that is present in turbulent flow. If the momentum and thermal eddy diffusivities are zero (no apparent turbulent shear stress and heat flux), then the turbulent flow equations reduce to the laminar equations. We can define the eddy diffusivities for momentum transfer \varepsilon_M and heat transfer \varepsilon_H as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eddy Diffusion
In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence (or turbulent flow). The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor. In laminar flows, material properties (salt, heat, humidity, aerosols etc.) are mixed by random motion of individual molecules. By a purely probabilistic argument, the net flux of molecules from high concentration area to low concentration area is higher than the flux in the opposite direction. This down-gradient flux equilibrates the concentration profile over time. This phenomenon is called molecular diffusion, and its mathematical aspect is captured by the diffusion equation. In turbulent flows, on top of mixing by molecular diffusion, eddies stir () the fluid. This causes fluid parcels from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turbulence Modeling
In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows. Closure problem The Navier–Stokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged Navier–Stokes (RANS) equations, which govern the mean flow. However, the nonlinearity of the Navier–S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lewis Number
In fluid dynamics and thermodynamics, the Lewis number (denoted ) is a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer. The Lewis number puts the thickness of the thermal boundary layer in relation to the concentration boundary layer. The Lewis number is defined as :\mathrm = \frac = \frac . where: * is the thermal diffusivity, * is the mass diffusivity, * is the thermal conductivity, * is the density, * is the mixture-averaged diffusion coefficient, * is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. The Lewis number can also be expressed in terms of the Prandtl number () and the Schmidt number (): :\mathrm = \frac It is named after Warren K. Lewis (1882–1975), who was the first head of the Chemical Engineering Department at MIT. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Diffusivity
In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive property. Thermal diffusivity is usually denoted by lowercase alpha (), but , , (kappa), , , D_T are also used. The formula is \alpha = \frac, where : is thermal conductivity (W/(m·K)), : is specific heat capacity (J/(kg·K)), : is density (kg/m3). Together, can be considered the volumetric heat capacity (J/(m3·K)). Thermal diffusivity is a positive coefficient in the heat equation: \frac = \alpha \nabla^2 T. One way to view thermal diffusivity is as the ratio of the time derivative of temperature to its Second derivative#Generalization to higher dimensions, curvature, quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prandtl Number
The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:where: * \nu : momentum diffusivity ( kinematic viscosity), \nu = \mu/\rho, ( SI units: m2/s) * \alpha : thermal diffusivity, \alpha = k/(\rho c_p), (SI units: m2/s) * \mu : dynamic viscosity, (SI units: Pa s = N s/m2) * k : thermal conductivity, (SI units: W/(m·K)) * c_p : specific heat, (SI units: J/(kg·K)) * \rho : density, (SI units: kg/m3). Note that whereas the Reynolds number and Grashof number are subscripted with a scale variable, the Prandtl number contains no such length scale and is dependent only on the fluid and the fluid state. The Prandtl number is often found in property tables alongside other properties such as viscosity and thermal conductivity. The mass transfer analog of the Prandtl number is the Schmidt number and the ratio of the Pran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |